Light‐Driven Water Splitting Mediated by Photogenerated Bromine

Light‐Driven Water Splitting Mediated by Photogenerated Bromine Light‐driven water splitting was achieved using a dye‐sensitized mesoporous oxide film and the oxidation of bromide (Br−) to bromine (Br2) or tribromide (Br3−). The chemical oxidant (Br2 or Br3−) is formed during illumination at the photoanode and used as a sacrificial oxidant to drive a water oxidation catalyst (WOC), here demonstrated using [Ru(bda)(pic)2], (1; pic=picoline, bda=2,2′‐bipyridine‐6,6′‐dicarboxylate). The photochemical oxidation of bromide produces a chemical oxidant with a potential of 1.09 V vs. NHE for the Br2/Br− couple or 1.05 V vs. NHE for the Br3−/Br− couple, which is sufficient to drive water oxidation at 1 (RuV/IV≈1.0 V vs. NHE at pH 5.6). At pH 5.6, using a 0.2 m acetate buffer containing 40 mm LiBr and the [Ru(4,4′‐PO3H2‐bpy)(bpy)2]2+ (RuP2+, bpy=2,2′‐bipyridine) chromophore dye on a SnO2/TiO2 core–shell electrode resulted in a photocurrent density of around 1.2 mA cm−2 under approximately 1 Sun illumination and a Faradaic efficiency upon addition of 1 of 77 % for oxygen evolution. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Angewandte Chemie Wiley

Light‐Driven Water Splitting Mediated by Photogenerated Bromine

Loading next page...
 
/lp/wiley/light-driven-water-splitting-mediated-by-photogenerated-bromine-0oGrCGdFnF
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
© 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
ISSN
0044-8249
eISSN
1521-3757
D.O.I.
10.1002/ange.201708879
Publisher site
See Article on Publisher Site

Abstract

Light‐driven water splitting was achieved using a dye‐sensitized mesoporous oxide film and the oxidation of bromide (Br−) to bromine (Br2) or tribromide (Br3−). The chemical oxidant (Br2 or Br3−) is formed during illumination at the photoanode and used as a sacrificial oxidant to drive a water oxidation catalyst (WOC), here demonstrated using [Ru(bda)(pic)2], (1; pic=picoline, bda=2,2′‐bipyridine‐6,6′‐dicarboxylate). The photochemical oxidation of bromide produces a chemical oxidant with a potential of 1.09 V vs. NHE for the Br2/Br− couple or 1.05 V vs. NHE for the Br3−/Br− couple, which is sufficient to drive water oxidation at 1 (RuV/IV≈1.0 V vs. NHE at pH 5.6). At pH 5.6, using a 0.2 m acetate buffer containing 40 mm LiBr and the [Ru(4,4′‐PO3H2‐bpy)(bpy)2]2+ (RuP2+, bpy=2,2′‐bipyridine) chromophore dye on a SnO2/TiO2 core–shell electrode resulted in a photocurrent density of around 1.2 mA cm−2 under approximately 1 Sun illumination and a Faradaic efficiency upon addition of 1 of 77 % for oxygen evolution.

Journal

Angewandte ChemieWiley

Published: Jan 19, 2018

Keywords: ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off