Leucocyte and Platelet‐rich Fibrin: a carrier of autologous multipotent cells for regenerative medicine

Leucocyte and Platelet‐rich Fibrin: a carrier of autologous multipotent cells for regenerative... The wound healing is a complex process wherein inflammation, proliferation and regeneration evolve according to a spatio‐temporal pattern from the activation of coagulation cascade to the formation of a plug clot including fibrin matrix, blood‐borne cells and cytokines/growth factors. Creating environments conducive to tissue repair, the haemoderivatives are commonly proposed for the treatment of hard‐to‐heal wounds. Here, we explored in vitro the intrinsic regenerative potentialities of a leucocyte‐ and platelet‐rich fibrin product, known as CPL‐MB, defining the stemness grade of cells sprouting from the haemoderivative. Using highly concentrated serum‐based medium to simulate wound conditions, we isolated fibroblast‐like cells (CPL‐CMCs) adhering to plastic and showing stable in vitro propagation, heterogeneous stem cell expression pattern, endothelial adhesive properties and immunomodulatory profile. Due to their blood derivation and expression of CXCR4, CPL‐CMCs have been suggested to be immature cells circulating in peripheral blood at quiescent state until activation by both coagulation event and inflammatory stimuli such as stromal‐derived factor 1/SDF1. Expressing integrins (CD49f, CD103), vascular adhesion molecules (CD106, CD166), endoglin (CD105) and remodelling matrix enzymes (MMP2, MMP9, MMP13), they showed a transendothelial migratory potential besides multipotency. Taken together, our data suggested that a standardized, reliable and economically feasible blood product such as CPL‐MB functions as an artificial stem cell niche that, under permissive conditions, originate ex vivo immature cells that could be useful for autologous stem cell‐based therapies. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Cellular and Molecular Medicine Wiley

Leucocyte and Platelet‐rich Fibrin: a carrier of autologous multipotent cells for regenerative medicine

Loading next page...
 
/lp/wiley/leucocyte-and-platelet-rich-fibrin-a-carrier-of-autologous-multipotent-QYiJEQgFF9
Publisher
Wiley
Copyright
Copyright © 2018 John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine
ISSN
1582-1838
eISSN
1582-4934
D.O.I.
10.1111/jcmm.13468
Publisher site
See Article on Publisher Site

Abstract

The wound healing is a complex process wherein inflammation, proliferation and regeneration evolve according to a spatio‐temporal pattern from the activation of coagulation cascade to the formation of a plug clot including fibrin matrix, blood‐borne cells and cytokines/growth factors. Creating environments conducive to tissue repair, the haemoderivatives are commonly proposed for the treatment of hard‐to‐heal wounds. Here, we explored in vitro the intrinsic regenerative potentialities of a leucocyte‐ and platelet‐rich fibrin product, known as CPL‐MB, defining the stemness grade of cells sprouting from the haemoderivative. Using highly concentrated serum‐based medium to simulate wound conditions, we isolated fibroblast‐like cells (CPL‐CMCs) adhering to plastic and showing stable in vitro propagation, heterogeneous stem cell expression pattern, endothelial adhesive properties and immunomodulatory profile. Due to their blood derivation and expression of CXCR4, CPL‐CMCs have been suggested to be immature cells circulating in peripheral blood at quiescent state until activation by both coagulation event and inflammatory stimuli such as stromal‐derived factor 1/SDF1. Expressing integrins (CD49f, CD103), vascular adhesion molecules (CD106, CD166), endoglin (CD105) and remodelling matrix enzymes (MMP2, MMP9, MMP13), they showed a transendothelial migratory potential besides multipotency. Taken together, our data suggested that a standardized, reliable and economically feasible blood product such as CPL‐MB functions as an artificial stem cell niche that, under permissive conditions, originate ex vivo immature cells that could be useful for autologous stem cell‐based therapies.

Journal

Journal of Cellular and Molecular MedicineWiley

Published: Jan 1, 2018

Keywords: ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off