Land use improves spatial predictions of mountain plant abundance but not presence‐absence

Land use improves spatial predictions of mountain plant abundance but not presence‐absence Question: Does a land‐use variable improve spatial predictions of plant species presence‐absence and abundance models at the regional scale in a mountain landscape? Location: Western Swiss Alps. Methods: Presence‐absence generalized linear models (GLM) and abundance ordinal logistic regression models (LRM) were fitted to data on 78 mountain plant species, with topo‐climatic and/or land‐use variables available at a 25‐m resolution. The additional contribution of land use when added to topo‐climatic models was evaluated by: (1) assessing the changes in model fit and (2) predictive power, (3) partitioning the deviance respectively explained by the topo‐climatic variables and the land‐use variable through variation partitioning, and (5) comparing spatial projections. Results: Land use significantly improved the fit of presence‐absence models but not their predictive power. In contrast, land use significantly improved both the fit and predictive power of abundance models. Variation partitioning also showed that the individual contribution of land use to the deviance explained by presence‐absence models was, on average, weak for both GLM and LRM (3.7% and 4.5%, respectively), but changes in spatial projections could nevertheless be important for some species. Conclusions: In this mountain area and at our regional scale, land use is important for predicting abundance, but not presence‐absence. The importance of adding land‐use information depends on the species considered. Even without a marked effect on model fit and predictive performance, adding land use can affect spatial projections of both presence‐absence and abundance models. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Vegetation Science Wiley

Land use improves spatial predictions of mountain plant abundance but not presence‐absence

Loading next page...
 
/lp/wiley/land-use-improves-spatial-predictions-of-mountain-plant-abundance-but-hULC6eee0B
Publisher
Wiley
Copyright
© 2009 International Association for Vegetation Science
ISSN
1100-9233
eISSN
1654-1103
DOI
10.1111/j.1654-1103.2009.01098.x
Publisher site
See Article on Publisher Site

Abstract

Question: Does a land‐use variable improve spatial predictions of plant species presence‐absence and abundance models at the regional scale in a mountain landscape? Location: Western Swiss Alps. Methods: Presence‐absence generalized linear models (GLM) and abundance ordinal logistic regression models (LRM) were fitted to data on 78 mountain plant species, with topo‐climatic and/or land‐use variables available at a 25‐m resolution. The additional contribution of land use when added to topo‐climatic models was evaluated by: (1) assessing the changes in model fit and (2) predictive power, (3) partitioning the deviance respectively explained by the topo‐climatic variables and the land‐use variable through variation partitioning, and (5) comparing spatial projections. Results: Land use significantly improved the fit of presence‐absence models but not their predictive power. In contrast, land use significantly improved both the fit and predictive power of abundance models. Variation partitioning also showed that the individual contribution of land use to the deviance explained by presence‐absence models was, on average, weak for both GLM and LRM (3.7% and 4.5%, respectively), but changes in spatial projections could nevertheless be important for some species. Conclusions: In this mountain area and at our regional scale, land use is important for predicting abundance, but not presence‐absence. The importance of adding land‐use information depends on the species considered. Even without a marked effect on model fit and predictive performance, adding land use can affect spatial projections of both presence‐absence and abundance models.

Journal

Journal of Vegetation ScienceWiley

Published: Dec 1, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off