Lack of selectivity of URB602 for 2‐oleoylglycerol compared to anandamide hydrolysis in vitro

Lack of selectivity of URB602 for 2‐oleoylglycerol compared to anandamide hydrolysis in vitro Background and purpose: Two compounds, URB602 and URB754, have been reported in the literature to be selective inhibitors of monoacylglycerol lipase, although a recent study has questioned their ability to prevent 2‐arachidonoyl hydrolysis by brain homogenates and cerebellar membranes. In the present study, the ability of these compounds to inhibit monoacylglycerol lipase and fatty acid amide hydrolase has been reinvestigated. Experimental approach: Homogenates and cell lines were incubated with test compounds and, thereafter, with either (3H)‐2‐oleoylglycerol or (3H)‐anandamide. Labelled reaction products were separated from substrate using chloroform: methanol extraction. Key results: In cytosolic fractions from rat brain, URB602 and URB754 inhibited the hydrolysis of 2‐oleoylglycerol with IC50 values of 25 and 48 μM, respectively. Anandamide hydrolysis by brain membranes was not sensitive to URB754, but was inhibited by URB602 (IC50 value 17 μM). Hydrolysis of 2‐oleoylglycerol by human recombinant monoacylglycerol lipase was sensitive to URB602, but not URB754. The lack of selectivity of URB602 for 2‐oleoylglycerol compared to anandamide hydrolysis was also observed for intact RBL2H3 basophilic leukaemia cells. C6 glioma expressed mRNA for monoacylglycerol lipase, and hydrolyzed 2‐oleoylglycerol in a manner sensitive to inhibition by methyl arachidonoyl fluorophosphonate but not URB754 or URB597. MC3T3‐E1 mouse osteoblastic cells, which did not express mRNA for monoacylglycerol lipase, hydrolyzed 2‐oleoylglycerol in the presence of URB597, but the hydrolysis was less sensitive to methyl arachidonoyl fluorophosphonate than for C6 cells. Conclusions and implications: The data demonstrate that the compounds URB602 and URB754 do not behave as selective and/or potent inhibitors of monoacylglycerol lipase. British Journal of Pharmacology (2007) 150, 186–191. doi:10.1038/sj.bjp.0706971 http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png British Journal of Pharmacology Wiley

Lack of selectivity of URB602 for 2‐oleoylglycerol compared to anandamide hydrolysis in vitro

Loading next page...
 
/lp/wiley/lack-of-selectivity-of-urb602-for-2-oleoylglycerol-compared-to-RJlDC53ypY
Publisher
Wiley
Copyright
2007 British Pharmacological Society
ISSN
0007-1188
eISSN
1476-5381
DOI
10.1038/sj.bjp.0706971
pmid
17143303
Publisher site
See Article on Publisher Site

Abstract

Background and purpose: Two compounds, URB602 and URB754, have been reported in the literature to be selective inhibitors of monoacylglycerol lipase, although a recent study has questioned their ability to prevent 2‐arachidonoyl hydrolysis by brain homogenates and cerebellar membranes. In the present study, the ability of these compounds to inhibit monoacylglycerol lipase and fatty acid amide hydrolase has been reinvestigated. Experimental approach: Homogenates and cell lines were incubated with test compounds and, thereafter, with either (3H)‐2‐oleoylglycerol or (3H)‐anandamide. Labelled reaction products were separated from substrate using chloroform: methanol extraction. Key results: In cytosolic fractions from rat brain, URB602 and URB754 inhibited the hydrolysis of 2‐oleoylglycerol with IC50 values of 25 and 48 μM, respectively. Anandamide hydrolysis by brain membranes was not sensitive to URB754, but was inhibited by URB602 (IC50 value 17 μM). Hydrolysis of 2‐oleoylglycerol by human recombinant monoacylglycerol lipase was sensitive to URB602, but not URB754. The lack of selectivity of URB602 for 2‐oleoylglycerol compared to anandamide hydrolysis was also observed for intact RBL2H3 basophilic leukaemia cells. C6 glioma expressed mRNA for monoacylglycerol lipase, and hydrolyzed 2‐oleoylglycerol in a manner sensitive to inhibition by methyl arachidonoyl fluorophosphonate but not URB754 or URB597. MC3T3‐E1 mouse osteoblastic cells, which did not express mRNA for monoacylglycerol lipase, hydrolyzed 2‐oleoylglycerol in the presence of URB597, but the hydrolysis was less sensitive to methyl arachidonoyl fluorophosphonate than for C6 cells. Conclusions and implications: The data demonstrate that the compounds URB602 and URB754 do not behave as selective and/or potent inhibitors of monoacylglycerol lipase. British Journal of Pharmacology (2007) 150, 186–191. doi:10.1038/sj.bjp.0706971

Journal

British Journal of PharmacologyWiley

Published: Jan 1, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month