Label‐free relative quantification of secreted proteins as a non‐invasive method for the quality control of chondrogenesis in bioengineered substitutes for cartilage repair

Label‐free relative quantification of secreted proteins as a non‐invasive method for the... Cartilage tissue engineering is making progress, but the competing available strategies still leave room for improvement and consensual overviews regarding the best combinations of scaffolds and cell sources are limited by the capacity to compare them directly. In addition, because most strategies involve autologous cell transfer, once these are optimized, the resulting implants require individual quality control prior to grafting in order to emphasize patient‐to‐patient differential responsiveness to engineering processes. Here, cartilage substitutes prepared from human mesenchymal stem cells undergoing chondrogenic differentiation within distinct scaffolds were used as pilot samples to investigate the pertinence of a novel method with the aim of characterizing the implants. The limits and advantages of analysing, by label‐free liquid chromatography‐coupled matrix‐assisted laser desorption and ionization (LC‐MALDI) mass spectrometry, the secreted proteome released into culture medium by engineered cartilage tissues were investigated and compared with more classically used methods for biomaterial characterization. This method did not require sacrificing the biomaterials and robustly evidenced their chondrogenic statuses. In more detail, the method highlighted differences between batches prepared from distinct donors. It was adapted to distinct scaffolds and allowed a comparison of the influence of individual engineering steps, such as growth factor combinations and oxygen tension. Finally, it evidenced subtle changes between replicate substitutes within a series, thereby distinguishing the least and most accomplished ones. We conclude that relative quantification of secreted proteins through label‐free LC‐MALDI will be useful, not only to orientate engineering methodologies, but also to ultimately provide non‐invasive quality control of engineered tissue substitutes for the repair of cartilage and possibly other connective tissues. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Tissue Engineering and Regenerative Medicine Wiley

Label‐free relative quantification of secreted proteins as a non‐invasive method for the quality control of chondrogenesis in bioengineered substitutes for cartilage repair

Loading next page...
 
/lp/wiley/label-free-relative-quantification-of-secreted-proteins-as-a-non-IBC0dylzn0
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
Copyright © 2018 John Wiley & Sons, Ltd.
ISSN
1932-6254
eISSN
1932-7005
D.O.I.
10.1002/term.2454
Publisher site
See Article on Publisher Site

Abstract

Cartilage tissue engineering is making progress, but the competing available strategies still leave room for improvement and consensual overviews regarding the best combinations of scaffolds and cell sources are limited by the capacity to compare them directly. In addition, because most strategies involve autologous cell transfer, once these are optimized, the resulting implants require individual quality control prior to grafting in order to emphasize patient‐to‐patient differential responsiveness to engineering processes. Here, cartilage substitutes prepared from human mesenchymal stem cells undergoing chondrogenic differentiation within distinct scaffolds were used as pilot samples to investigate the pertinence of a novel method with the aim of characterizing the implants. The limits and advantages of analysing, by label‐free liquid chromatography‐coupled matrix‐assisted laser desorption and ionization (LC‐MALDI) mass spectrometry, the secreted proteome released into culture medium by engineered cartilage tissues were investigated and compared with more classically used methods for biomaterial characterization. This method did not require sacrificing the biomaterials and robustly evidenced their chondrogenic statuses. In more detail, the method highlighted differences between batches prepared from distinct donors. It was adapted to distinct scaffolds and allowed a comparison of the influence of individual engineering steps, such as growth factor combinations and oxygen tension. Finally, it evidenced subtle changes between replicate substitutes within a series, thereby distinguishing the least and most accomplished ones. We conclude that relative quantification of secreted proteins through label‐free LC‐MALDI will be useful, not only to orientate engineering methodologies, but also to ultimately provide non‐invasive quality control of engineered tissue substitutes for the repair of cartilage and possibly other connective tissues.

Journal

Journal of Tissue Engineering and Regenerative MedicineWiley

Published: Jan 1, 2018

Keywords: ; ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off