Kernel excess mass test for multimodality

Kernel excess mass test for multimodality In this paper we propose a new statistical procedure for testing the multimodality of an underlying distribution. Peter Hall developed an innovative idea of calibrating the null distribution for the excess mass test statistic using the empirical distribution function. We find that the qualitative characteristics of a smooth underlying distribution function on the number of modes is barely preserved in the excess mass functional by the non‐smooth empirical distribution function. Instead of the empirical distribution function, we propose to use a kernel distribution function estimator. We derive the limiting distribution of the resulting test statistic under strong unimodality, based on which we apply the calibration idea to the proposed test statistic to obtain a cut‐off value. Our numerical study suggests that the calibrated kernel excess mass test has greater power than other existing methods. We also illustrate the use of the proposed method in a case study in astronomy which supports an assumption on a physical property of minor planets in the solar system. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Australian & New Zealand Journal of Statistics Wiley

Kernel excess mass test for multimodality

Loading next page...
 
/lp/wiley/kernel-excess-mass-test-for-multimodality-gXp27ghlRD
Publisher
Wiley
Copyright
Copyright © 2018 Australian Statistical Publishing Association Inc.
ISSN
1369-1473
eISSN
1467-842X
D.O.I.
10.1111/anzs.12214
Publisher site
See Article on Publisher Site

Abstract

In this paper we propose a new statistical procedure for testing the multimodality of an underlying distribution. Peter Hall developed an innovative idea of calibrating the null distribution for the excess mass test statistic using the empirical distribution function. We find that the qualitative characteristics of a smooth underlying distribution function on the number of modes is barely preserved in the excess mass functional by the non‐smooth empirical distribution function. Instead of the empirical distribution function, we propose to use a kernel distribution function estimator. We derive the limiting distribution of the resulting test statistic under strong unimodality, based on which we apply the calibration idea to the proposed test statistic to obtain a cut‐off value. Our numerical study suggests that the calibrated kernel excess mass test has greater power than other existing methods. We also illustrate the use of the proposed method in a case study in astronomy which supports an assumption on a physical property of minor planets in the solar system.

Journal

Australian & New Zealand Journal of StatisticsWiley

Published: Jan 1, 2018

Keywords: ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off