Joint structural and physiological control on the interannual variation in productivity in a temperate grassland: A data‐model comparison

Joint structural and physiological control on the interannual variation in productivity in a... Given the important contributions of semiarid region to global land carbon cycle, accurate modeling of the interannual variability (IAV) of terrestrial gross primary productivity (GPP) is important but remains challenging. By decomposing GPP into leaf area index (LAI) and photosynthesis per leaf area (i.e., GPP_leaf), we investigated the IAV of GPP and the mechanisms responsible in a temperate grassland of northwestern China. We further assessed six ecosystem models for their capabilities in reproducing the observed IAV of GPP in a temperate grassland from 2004 to 2011 in China. We observed that the responses to LAI and GPP_leaf to soil water significantly contributed to IAV of GPP at the grassland ecosystem. Two of six models with prescribed LAI simulated of the observed IAV of GPP quite well, but still underestimated the variance of GPP_leaf, therefore the variance of GPP. In comparison, simulated pattern by the other four models with prognostic LAI differed significantly from the observed IAV of GPP. Only some models with prognostic LAI can capture the observed sharp decline of GPP in drought years. Further analysis indicated that accurately representing the responses of GPP_leaf and leaf stomatal conductance to soil moisture are critical for the models to reproduce the observed IAV of GPP_leaf. Our framework also identified that the contributions of LAI and GPP_leaf to the observed IAV of GPP were relatively independent. We conclude that our framework of decomposing GPP into LAI and GPP_leaf has a significant potential for facilitating future model intercomparison, benchmarking and optimization should be adopted for future data‐model comparisons. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Global Change Biology Wiley

Joint structural and physiological control on the interannual variation in productivity in a temperate grassland: A data‐model comparison

Loading next page...
 
/lp/wiley/joint-structural-and-physiological-control-on-the-interannual-wvjbYJNXLU
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
Copyright © 2018 John Wiley & Sons Ltd
ISSN
1354-1013
eISSN
1365-2486
D.O.I.
10.1111/gcb.14274
Publisher site
See Article on Publisher Site

Abstract

Given the important contributions of semiarid region to global land carbon cycle, accurate modeling of the interannual variability (IAV) of terrestrial gross primary productivity (GPP) is important but remains challenging. By decomposing GPP into leaf area index (LAI) and photosynthesis per leaf area (i.e., GPP_leaf), we investigated the IAV of GPP and the mechanisms responsible in a temperate grassland of northwestern China. We further assessed six ecosystem models for their capabilities in reproducing the observed IAV of GPP in a temperate grassland from 2004 to 2011 in China. We observed that the responses to LAI and GPP_leaf to soil water significantly contributed to IAV of GPP at the grassland ecosystem. Two of six models with prescribed LAI simulated of the observed IAV of GPP quite well, but still underestimated the variance of GPP_leaf, therefore the variance of GPP. In comparison, simulated pattern by the other four models with prognostic LAI differed significantly from the observed IAV of GPP. Only some models with prognostic LAI can capture the observed sharp decline of GPP in drought years. Further analysis indicated that accurately representing the responses of GPP_leaf and leaf stomatal conductance to soil moisture are critical for the models to reproduce the observed IAV of GPP_leaf. Our framework also identified that the contributions of LAI and GPP_leaf to the observed IAV of GPP were relatively independent. We conclude that our framework of decomposing GPP into LAI and GPP_leaf has a significant potential for facilitating future model intercomparison, benchmarking and optimization should be adopted for future data‐model comparisons.

Journal

Global Change BiologyWiley

Published: Jan 1, 2018

Keywords: ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off