Is quercetin an alternative natural crosslinking agent to genipin for long‐term dermal scaffolds implantation?

Is quercetin an alternative natural crosslinking agent to genipin for long‐term dermal... As biocompatible matrices, porcine dermal scaffolds have limited application in tissue engineering due to rapid degradation following implantation. This study compared the physical, chemical and biomechanical changes that occurred when genipin and quercetin were used to crosslink dermal scaffolds and to determine whether quercetin could be used as an alternative to genipin. Physicochemical changes in the collagen were assessed using spectroscopic methods [X‐ray diffraction analysis (XRD) and nuclear magnetic resonance (NMR) analysis]. The crosslinking reaction was evaluated by quantification of amino acids and the degree of this reaction by ninhydrin assay. Because the mechanical behaviour of the collagen matrices is highly influenced by crosslinking, the tensile strength of both sets of scaffolds was evaluated. The highest mechanical strength, stiffness, degree of crosslinking and changes in the packing features of collagen (measured by XRD) were achieved using genipin. Some of the results found in the quercetin‐crosslinked scaffolds were possibly due to hydration and dehydration effects elicited by the solvents (phosphate‐buffered saline or ethanol), as seen in the NMR results. In the quercetin‐ethanol‐crosslinked scaffolds, possible reorientation of the amino groups of the collagen molecule may have taken place. Therefore, depending on their proximity to the crosslinking reagent, different types and numbers of interactions may have occurred, inducing a higher crosslinking degree (as evidenced by the ninhydrin assay) and reduction in the free amino acids after reaction. Both crosslinking agents and solvents interfere in the physicochemical properties of collagen thereby inducing variations in the matrix structure. Quercetin‐crosslinked scaffolds may have broader clinical application where a lower degree of crosslinking and stiffness is required. Copyright © 2016 John Wiley & Sons, Ltd. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Tissue Engineering and Regenerative Medicine Wiley

Is quercetin an alternative natural crosslinking agent to genipin for long‐term dermal scaffolds implantation?

Loading next page...
 
/lp/wiley/is-quercetin-an-alternative-natural-crosslinking-agent-to-genipin-for-NxEZiEK6JH
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
Copyright © 2018 John Wiley & Sons, Ltd.
ISSN
1932-6254
eISSN
1932-7005
D.O.I.
10.1002/term.2338
Publisher site
See Article on Publisher Site

Abstract

As biocompatible matrices, porcine dermal scaffolds have limited application in tissue engineering due to rapid degradation following implantation. This study compared the physical, chemical and biomechanical changes that occurred when genipin and quercetin were used to crosslink dermal scaffolds and to determine whether quercetin could be used as an alternative to genipin. Physicochemical changes in the collagen were assessed using spectroscopic methods [X‐ray diffraction analysis (XRD) and nuclear magnetic resonance (NMR) analysis]. The crosslinking reaction was evaluated by quantification of amino acids and the degree of this reaction by ninhydrin assay. Because the mechanical behaviour of the collagen matrices is highly influenced by crosslinking, the tensile strength of both sets of scaffolds was evaluated. The highest mechanical strength, stiffness, degree of crosslinking and changes in the packing features of collagen (measured by XRD) were achieved using genipin. Some of the results found in the quercetin‐crosslinked scaffolds were possibly due to hydration and dehydration effects elicited by the solvents (phosphate‐buffered saline or ethanol), as seen in the NMR results. In the quercetin‐ethanol‐crosslinked scaffolds, possible reorientation of the amino groups of the collagen molecule may have taken place. Therefore, depending on their proximity to the crosslinking reagent, different types and numbers of interactions may have occurred, inducing a higher crosslinking degree (as evidenced by the ninhydrin assay) and reduction in the free amino acids after reaction. Both crosslinking agents and solvents interfere in the physicochemical properties of collagen thereby inducing variations in the matrix structure. Quercetin‐crosslinked scaffolds may have broader clinical application where a lower degree of crosslinking and stiffness is required. Copyright © 2016 John Wiley & Sons, Ltd.

Journal

Journal of Tissue Engineering and Regenerative MedicineWiley

Published: Jan 1, 2018

Keywords: ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off