Involvement of the Bed Nucleus of the Stria Terminalis in Tonic Regulation of Paraventricular Hypothalamic CRH and AVP mRNA Expression

Involvement of the Bed Nucleus of the Stria Terminalis in Tonic Regulation of Paraventricular... The bed nucleus of the stria terminalis (BNST) occupies a central position in pathways regulating hypothalamo‐pituitary‐adrenocortical (HPA) stress regulation. The potential role of the BNST in tonic neural control of HPA function was assessed by examining effects of selective BNST lesions on expression of ACTH secretagogues in HPA‐integrative neurons of the medial parvocellular paraventricular nucleus. Anterior BNST lesions (ABN) involved major portions of the anteromedial, anterolateral, ventromedial, ventrolateral, dorsolateral and juxtacapsular subnuclei. These lesions resulted in significant (30%) decreases in corticotropin‐releasing hormone (CRH) mRNA expression across the rostrocaudal extent of the medial parvocellular PVN, with no accompanying changes in basal arginine vasopressin (AVP) mRNA levels. Posterior BNST (PBN) lesions involved large but subtotal damage to the posterior intermediate, posterior medial, posterior lateral and preoptic subnuclei; these lesions resulted in small but significant changes in CRH mRNA and slight increases in number of AVP mRNA‐producing parvocellular neurons. PBN effects on CRH mRNA expression were most pronounced at the caudal extent of the medial parvocellular zone, suggesting a topographic input from the posterior BNST to the PVN that is only partially compromised by PBN lesions. Analysis of individual cases revealed a correlation between damage of the anterolateral BNST and decreased CRH mRNA levels, and damage of the posterior intermediate and/or posterior medial BNST and increased CRH mRNA levels. The results suggest differential BNST input into HPA regulation, perhaps reflecting the diversity of limbic input into the BNST region. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Neuroendocrinology Wiley

Involvement of the Bed Nucleus of the Stria Terminalis in Tonic Regulation of Paraventricular Hypothalamic CRH and AVP mRNA Expression

Loading next page...
 
/lp/wiley/involvement-of-the-bed-nucleus-of-the-stria-terminalis-in-tonic-C0D9cLMOlx
Publisher
Wiley
Copyright
Copyright © 1994 Wiley Subscription Services, Inc., A Wiley Company
ISSN
0953-8194
eISSN
1365-2826
DOI
10.1111/j.1365-2826.1994.tb00604.x
Publisher site
See Article on Publisher Site

Abstract

The bed nucleus of the stria terminalis (BNST) occupies a central position in pathways regulating hypothalamo‐pituitary‐adrenocortical (HPA) stress regulation. The potential role of the BNST in tonic neural control of HPA function was assessed by examining effects of selective BNST lesions on expression of ACTH secretagogues in HPA‐integrative neurons of the medial parvocellular paraventricular nucleus. Anterior BNST lesions (ABN) involved major portions of the anteromedial, anterolateral, ventromedial, ventrolateral, dorsolateral and juxtacapsular subnuclei. These lesions resulted in significant (30%) decreases in corticotropin‐releasing hormone (CRH) mRNA expression across the rostrocaudal extent of the medial parvocellular PVN, with no accompanying changes in basal arginine vasopressin (AVP) mRNA levels. Posterior BNST (PBN) lesions involved large but subtotal damage to the posterior intermediate, posterior medial, posterior lateral and preoptic subnuclei; these lesions resulted in small but significant changes in CRH mRNA and slight increases in number of AVP mRNA‐producing parvocellular neurons. PBN effects on CRH mRNA expression were most pronounced at the caudal extent of the medial parvocellular zone, suggesting a topographic input from the posterior BNST to the PVN that is only partially compromised by PBN lesions. Analysis of individual cases revealed a correlation between damage of the anterolateral BNST and decreased CRH mRNA levels, and damage of the posterior intermediate and/or posterior medial BNST and increased CRH mRNA levels. The results suggest differential BNST input into HPA regulation, perhaps reflecting the diversity of limbic input into the BNST region.

Journal

Journal of NeuroendocrinologyWiley

Published: Aug 1, 1994

References

  • Local tetrodotoxin blocks chronic stress effects on corticotropin‐releasing factor and vasopressin messenger ribonucleic acids in hypophysiotropic neurons
    Sawchenko, Sawchenko; Arias, Arias; Mortrud, Mortrud

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off