Invasive California poppies ( Eschscholzia californica Cham.) grow larger than native individuals under reduced competition

Invasive California poppies ( Eschscholzia californica Cham.) grow larger than native individuals... Invasive plants can be larger and more fecund in their invasive range than in their native range, although it is unknown how often this is a result of a genetically controlled shift in traits, a plastic response to a favourable environment, or a combination thereof. Here we present data from common garden experiments that compare the size and fecundity of native and invasive California poppies, Eschscholzia californica Cham. Individuals from 20 populations, half from California (native) and half from Chile (invasive), were grown both with and without competition from other plants in a container experiment and at two field locations. There were no differences in survival between native and invasive plants at any location. We found significant increases in size and fecundity in invasive populations at two of three locations when poppies were grown without competition from other plants. Our results indicate that genetic shifts in traits have occurred in invasive populations, and that the invasive plants are better at maximizing growth and reproduction in open environments. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ecology Letters Wiley

Invasive California poppies ( Eschscholzia californica Cham.) grow larger than native individuals under reduced competition

Ecology Letters, Volume 6 (3) – Mar 1, 2003

Loading next page...
 
/lp/wiley/invasive-california-poppies-eschscholzia-californica-cham-grow-larger-FqmdLbAU89
Publisher
Wiley
Copyright
Copyright © 2003 Wiley Subscription Services, Inc., A Wiley Company
ISSN
1461-023X
eISSN
1461-0248
D.O.I.
10.1046/j.1461-0248.2003.00423.x
Publisher site
See Article on Publisher Site

Abstract

Invasive plants can be larger and more fecund in their invasive range than in their native range, although it is unknown how often this is a result of a genetically controlled shift in traits, a plastic response to a favourable environment, or a combination thereof. Here we present data from common garden experiments that compare the size and fecundity of native and invasive California poppies, Eschscholzia californica Cham. Individuals from 20 populations, half from California (native) and half from Chile (invasive), were grown both with and without competition from other plants in a container experiment and at two field locations. There were no differences in survival between native and invasive plants at any location. We found significant increases in size and fecundity in invasive populations at two of three locations when poppies were grown without competition from other plants. Our results indicate that genetic shifts in traits have occurred in invasive populations, and that the invasive plants are better at maximizing growth and reproduction in open environments.

Journal

Ecology LettersWiley

Published: Mar 1, 2003

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off