Interaction of antivirals with a heptameric bundle model of the p7 protein of hepatitis C virus

Interaction of antivirals with a heptameric bundle model of the p7 protein of hepatitis C virus A series of ligands are known experimentally to affect the infectivity cycle of the hepatitis C virus. The target protein for the ligands is proposed to be p7, a 63 amino acid polytopic channel‐forming protein, with possibly two transmembrane domains. Protein p7 is found to assemble into functional oligomers of various sizes, depending on the genotype (GT). Nine ligands are docked to various sites of a computationally derived heptameric bundle of p7 of GT1a. The energy of interaction, here binding energy, is calculated using three different docking programs (Autodock, MOE, LeadIT). Three protein regions are defined to which the ligands are placed, the loop region and the site with the termini as well as the mid‐region which is supposed to track poses inside the putative pore. A common feature is that the loop sites and poses either within the pore or at the intermonomer space of the bundle are preferred for all ligands with proposed binding energies smaller than −10 kJ/mol. BIT225, benzamine, amantadine, and NN‐DNJ show good overall scoring. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Chemical Biology & Drug Design Wiley

Interaction of antivirals with a heptameric bundle model of the p7 protein of hepatitis C virus

Loading next page...
 
/lp/wiley/interaction-of-antivirals-with-a-heptameric-bundle-model-of-the-p7-CHfwpZFACy
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
Copyright © 2018 John Wiley & Sons A/S
ISSN
1747-0277
eISSN
1747-0285
D.O.I.
10.1111/cbdd.13162
Publisher site
See Article on Publisher Site

Abstract

A series of ligands are known experimentally to affect the infectivity cycle of the hepatitis C virus. The target protein for the ligands is proposed to be p7, a 63 amino acid polytopic channel‐forming protein, with possibly two transmembrane domains. Protein p7 is found to assemble into functional oligomers of various sizes, depending on the genotype (GT). Nine ligands are docked to various sites of a computationally derived heptameric bundle of p7 of GT1a. The energy of interaction, here binding energy, is calculated using three different docking programs (Autodock, MOE, LeadIT). Three protein regions are defined to which the ligands are placed, the loop region and the site with the termini as well as the mid‐region which is supposed to track poses inside the putative pore. A common feature is that the loop sites and poses either within the pore or at the intermonomer space of the bundle are preferred for all ligands with proposed binding energies smaller than −10 kJ/mol. BIT225, benzamine, amantadine, and NN‐DNJ show good overall scoring.

Journal

Chemical Biology & Drug DesignWiley

Published: Jan 1, 2018

Keywords: ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off