Interacting Effects of Climate Change, Landscape Conversion, and Harvest on Carnivore Populations at the Range Margin: Marten and Lynx in the Northern Appalachians

Interacting Effects of Climate Change, Landscape Conversion, and Harvest on Carnivore Populations... Abstract: Assessing the effects of climate change on threatened species requires moving beyond simple bioclimatic models to models that incorporate interactions among climatic trends, landscape change, environmental stochasticity, and species life history. Populations of marten (Martes americana) and lynx (Lynx canadensis) in southeastern Canada and the northeastern United States represent peninsular extensions of boreal ranges and illustrate the potential impact of these threats on semi‐isolated populations at the range margin. Decreased snowfall may affect marten and lynx through decreased prey vulnerability and decreased competitive advantage over sympatric carnivores. I used a spatially explicit population model to assess potential effects of predicted changes in snowfall by 2055 on regional marten and lynx populations. The models' habitat rankings were derived from previous static models that correlated regional distribution with snowfall and vegetation data. Trapping scenarios were parameterized as a 10% proportional decrease in survival, and logging scenarios were parameterized as a 10% decrease in the extent of older coniferous or mixed forest. Both species showed stronger declines in the simulations due to climate change than to overexploitation or logging. Marten populations declined 40% because of climate change, 16% because of logging, and 30% because of trapping. Lynx populations declined 59% because of climate change, 36% because of trapping, and 20% in scenarios evaluating the effects of population cycles. Climate change interacted with logging in its effects on the marten and with trapping in its effects on the lynx, increasing overall vulnerability. For both species larger lowland populations were vulnerable to climate change, which suggests that contraction may occur in the core of their current regional range as well as among smaller peripheral populations. Despite their greater data requirements compared with bioclimatic models, mesoscale spatial viability models are important tools for generating more biologically realistic hypotheses regarding biotic response to climate change. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Conservation Biology Wiley

Interacting Effects of Climate Change, Landscape Conversion, and Harvest on Carnivore Populations at the Range Margin: Marten and Lynx in the Northern Appalachians

Conservation Biology, Volume 21 (4) – Aug 1, 2007

Loading next page...
 
/lp/wiley/interacting-effects-of-climate-change-landscape-conversion-and-harvest-Jfvqb1w5AJ
Publisher
Wiley
Copyright
Copyright © 2007 Wiley Subscription Services, Inc., A Wiley Company
ISSN
0888-8892
eISSN
1523-1739
DOI
10.1111/j.1523-1739.2007.00719.x
Publisher site
See Article on Publisher Site

Abstract

Abstract: Assessing the effects of climate change on threatened species requires moving beyond simple bioclimatic models to models that incorporate interactions among climatic trends, landscape change, environmental stochasticity, and species life history. Populations of marten (Martes americana) and lynx (Lynx canadensis) in southeastern Canada and the northeastern United States represent peninsular extensions of boreal ranges and illustrate the potential impact of these threats on semi‐isolated populations at the range margin. Decreased snowfall may affect marten and lynx through decreased prey vulnerability and decreased competitive advantage over sympatric carnivores. I used a spatially explicit population model to assess potential effects of predicted changes in snowfall by 2055 on regional marten and lynx populations. The models' habitat rankings were derived from previous static models that correlated regional distribution with snowfall and vegetation data. Trapping scenarios were parameterized as a 10% proportional decrease in survival, and logging scenarios were parameterized as a 10% decrease in the extent of older coniferous or mixed forest. Both species showed stronger declines in the simulations due to climate change than to overexploitation or logging. Marten populations declined 40% because of climate change, 16% because of logging, and 30% because of trapping. Lynx populations declined 59% because of climate change, 36% because of trapping, and 20% in scenarios evaluating the effects of population cycles. Climate change interacted with logging in its effects on the marten and with trapping in its effects on the lynx, increasing overall vulnerability. For both species larger lowland populations were vulnerable to climate change, which suggests that contraction may occur in the core of their current regional range as well as among smaller peripheral populations. Despite their greater data requirements compared with bioclimatic models, mesoscale spatial viability models are important tools for generating more biologically realistic hypotheses regarding biotic response to climate change.

Journal

Conservation BiologyWiley

Published: Aug 1, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off