Integrating total oxidizable precursor assay data to evaluate fate and transport of PFASs

Integrating total oxidizable precursor assay data to evaluate fate and transport of PFASs Fate and transport of per‐ and polyfluoroalkyl substances (PFASs) are complex and are not well understood. Among this class of emerging contaminants, perfluoroalkyl acids (PFAAs) comprising perfluoroalkyl carboxylates (PFCAs) and perfluoroalkyl sulfonates (PFSAs) are being studied more frequently than polyfluorinated compounds. PFAAs are persistent in the environment, recalcitrant to biological degradation, and, therefore, widespread. Previous studies have indicated that some PFASs bioaccumulate. The fate and transport of PFAAs can be complicated by the presence of PFAA precursors. The PFAA precursors are defined in this article as those fluorinated chemicals that can be potentially transformed abiotically or biotically into terminal PFCA or PFSA products. Due to potential biotransformation in the environment, PFAA precursors can influence the temporal and lateral distribution of PFAAs in the environment. Presently, only a very small number of PFAA precursors can be quantitatively analyzed by commercial laboratories. For instance, N‐ethyl perfluorooctanesulfonamidoacetic acid and N‐methyl perfluorooctanesulfonamidoacetic acid are the only two precursors included in the most commonly applied PFAS analytical method, U.S. Environmental Protection Agency Method 537. The current commercial laboratory methodologies primarily quantify between 14 and 31 PFASs. As an alternative, a total oxidizable precursor assay (TOPA) was developed to quantify the measurable PFSA and PFCA concentrations after aggressive oxidation converting PFAA precursors abiotically into PFCAs. The difference between PFAA concentrations before and after oxidation can be used to estimate the amount of oxidizable PFAA precursors in the sample. This is one of the first articles that utilized TOPA data to help interpret PFAS fate and transport in the environment. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Remediation Wiley

Integrating total oxidizable precursor assay data to evaluate fate and transport of PFASs

Loading next page...
 
/lp/wiley/integrating-total-oxidizable-precursor-assay-data-to-evaluate-fate-and-uGfTmN3hoA
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
Copyright © 2018 Wiley Periodicals, Inc., a Wiley Company
ISSN
1051-5658
eISSN
1520-6831
D.O.I.
10.1002/rem.21551
Publisher site
See Article on Publisher Site

Abstract

Fate and transport of per‐ and polyfluoroalkyl substances (PFASs) are complex and are not well understood. Among this class of emerging contaminants, perfluoroalkyl acids (PFAAs) comprising perfluoroalkyl carboxylates (PFCAs) and perfluoroalkyl sulfonates (PFSAs) are being studied more frequently than polyfluorinated compounds. PFAAs are persistent in the environment, recalcitrant to biological degradation, and, therefore, widespread. Previous studies have indicated that some PFASs bioaccumulate. The fate and transport of PFAAs can be complicated by the presence of PFAA precursors. The PFAA precursors are defined in this article as those fluorinated chemicals that can be potentially transformed abiotically or biotically into terminal PFCA or PFSA products. Due to potential biotransformation in the environment, PFAA precursors can influence the temporal and lateral distribution of PFAAs in the environment. Presently, only a very small number of PFAA precursors can be quantitatively analyzed by commercial laboratories. For instance, N‐ethyl perfluorooctanesulfonamidoacetic acid and N‐methyl perfluorooctanesulfonamidoacetic acid are the only two precursors included in the most commonly applied PFAS analytical method, U.S. Environmental Protection Agency Method 537. The current commercial laboratory methodologies primarily quantify between 14 and 31 PFASs. As an alternative, a total oxidizable precursor assay (TOPA) was developed to quantify the measurable PFSA and PFCA concentrations after aggressive oxidation converting PFAA precursors abiotically into PFCAs. The difference between PFAA concentrations before and after oxidation can be used to estimate the amount of oxidizable PFAA precursors in the sample. This is one of the first articles that utilized TOPA data to help interpret PFAS fate and transport in the environment.

Journal

RemediationWiley

Published: Jan 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial