Infant Skin Microstructure Assessed In Vivo Differs from Adult Skin in Organization and at the Cellular Level

Infant Skin Microstructure Assessed In Vivo Differs from Adult Skin in Organization and at the... Abstract: Functional differences between infant and adult skin may be attributed to putative differences in skin microstructure. The purpose of this study was to examine infant skin microstructure in vivo and to compare it with that of adult skin. The lower thigh area of 20 healthy mothers (ages 25–43) and their biological children (ages 3–24 months) was examined using in vivo noninvasive methods including fluorescence spectroscopy, video microscopy, and confocal laser scanning microscopy. Stratum corneum and supra‐papillary epidermal thickness as well as cell size in the granular layer were assessed from the confocal images. Adhesive tapes were used to remove corneocytes from the outer‐most layer of stratum corneum and their size was computed using image analysis. Surface features showed differences in glyph density and surface area. Infant stratum corneum was found to be 30% and infant epidermis 20% thinner than in adults. Infant corneocytes were found to be 20% and granular cells 10% smaller than adult corneocytes indicating a more rapid cell turnover in infants. This observation was confirmed by fluorescence spectroscopy. Dermal papillae density and size distribution also differed. Surprisingly, a distinct direct structural relationship between the stratum corneum morphology and the dermal papillae was observed exclusively in infant skin. A change in reflected signal intensity at ∼100 μm indicating the transition between papillary and reticular dermis was evident only in adult skin. We demonstrate in vivo qualitative and quantitative differences in morphology between infant and adult skin. These differences in skin microstructure may help explain some of the reported functional differences. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Pediatric Dermatology Wiley

Infant Skin Microstructure Assessed In Vivo Differs from Adult Skin in Organization and at the Cellular Level

Loading next page...
 
/lp/wiley/infant-skin-microstructure-assessed-in-vivo-differs-from-adult-skin-in-rzotNKKjQv
Publisher
Wiley
Copyright
© 2009 Wiley Periodicals, Inc.
ISSN
0736-8046
eISSN
1525-1470
DOI
10.1111/j.1525-1470.2009.00973.x
Publisher site
See Article on Publisher Site

Abstract

Abstract: Functional differences between infant and adult skin may be attributed to putative differences in skin microstructure. The purpose of this study was to examine infant skin microstructure in vivo and to compare it with that of adult skin. The lower thigh area of 20 healthy mothers (ages 25–43) and their biological children (ages 3–24 months) was examined using in vivo noninvasive methods including fluorescence spectroscopy, video microscopy, and confocal laser scanning microscopy. Stratum corneum and supra‐papillary epidermal thickness as well as cell size in the granular layer were assessed from the confocal images. Adhesive tapes were used to remove corneocytes from the outer‐most layer of stratum corneum and their size was computed using image analysis. Surface features showed differences in glyph density and surface area. Infant stratum corneum was found to be 30% and infant epidermis 20% thinner than in adults. Infant corneocytes were found to be 20% and granular cells 10% smaller than adult corneocytes indicating a more rapid cell turnover in infants. This observation was confirmed by fluorescence spectroscopy. Dermal papillae density and size distribution also differed. Surprisingly, a distinct direct structural relationship between the stratum corneum morphology and the dermal papillae was observed exclusively in infant skin. A change in reflected signal intensity at ∼100 μm indicating the transition between papillary and reticular dermis was evident only in adult skin. We demonstrate in vivo qualitative and quantitative differences in morphology between infant and adult skin. These differences in skin microstructure may help explain some of the reported functional differences.

Journal

Pediatric DermatologyWiley

Published: Mar 1, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off