In Vivo Microdialysis of 2‐Deoxyglucose 6‐Phosphate into Brain

In Vivo Microdialysis of 2‐Deoxyglucose 6‐Phosphate into Brain Abstract : A unique method for simultaneously measuring interstitial (pHe) as well as intracellular (pHi) pH in the brains of lightly anesthetized rats is described. A 4‐mm microdialysis probe was inserted acutely into the right frontal lobe in the center of the area sampled by a surface coil tuned for the collection of 31P‐NMR spectra. 2‐Deoxyglucose 6‐phosphate (2‐DG‐6‐P) was microdialyzed into the rat until a single NMR peak was detected in the phosphomonoester region of the 31P spectrum. pHe and pHi values were calculated from the chemical shift of 2‐DG‐6‐P and inorganic phosphate, respectively, relative to the phosphocreatine peak. The average in vivo pHe was 7.24 ± 0.01, whereas the average pHi was 7.05 ± 0.01 (n = 7). The average pHe value and the average CSF bicarbonate value (23.5 ± 0.1 mEq/L) were used to calculate an interstitial Pco2 of 55 mm Hg. Rats were then subjected to a 15‐min period of either hypercapnia, by addition of CO2 (2.5, 5, or 10%) to the ventilator gases, or hypocapnia (Pco2 < 30 mm Hg), by increasing the ventilation rate and volume. pHe responded inversely to arterial Pco2 and was well described (r2 = 0.91) by the Henderson‐Hassel‐balch equation, assuming a pKa for the bicarbonate buffer system of 6.1 and a solubility coefficient for CO2 of 0.031. This confirms the view that the bicarbonate buffer system is dominant in the interstitial space. pHi responded inversely and linearly to arterial Pco2. The intracellular effect was muted as compared with pHe (slope = ‐0.0025, r2 = 0.60). pHe and pHi values were also monitored during the first 12 min of ischemia produced by cardiac arrest. pHe decreases more rapidly than pHi during the first 5 min of ischemia. After 12 min of ischemia, pHe and pHi values were not significantly different (6.44 ± 0.02 and 6.44 ± 0.03, respectively). The limitations, advantages, and future uses of the combined microdialysis/31P‐NMR method for measurement of pHe and pHi are discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Neurochemistry Wiley

In Vivo Microdialysis of 2‐Deoxyglucose 6‐Phosphate into Brain

Loading next page...
 
/lp/wiley/in-vivo-microdialysis-of-2-deoxyglucose-6-phosphate-into-brain-4Xr8beNXmV
Publisher
Wiley
Copyright
© International Society for Neurochemistry
ISSN
0022-3042
eISSN
1471-4159
D.O.I.
10.1046/j.1471-4159.1999.0720405.x
Publisher site
See Article on Publisher Site

Abstract

Abstract : A unique method for simultaneously measuring interstitial (pHe) as well as intracellular (pHi) pH in the brains of lightly anesthetized rats is described. A 4‐mm microdialysis probe was inserted acutely into the right frontal lobe in the center of the area sampled by a surface coil tuned for the collection of 31P‐NMR spectra. 2‐Deoxyglucose 6‐phosphate (2‐DG‐6‐P) was microdialyzed into the rat until a single NMR peak was detected in the phosphomonoester region of the 31P spectrum. pHe and pHi values were calculated from the chemical shift of 2‐DG‐6‐P and inorganic phosphate, respectively, relative to the phosphocreatine peak. The average in vivo pHe was 7.24 ± 0.01, whereas the average pHi was 7.05 ± 0.01 (n = 7). The average pHe value and the average CSF bicarbonate value (23.5 ± 0.1 mEq/L) were used to calculate an interstitial Pco2 of 55 mm Hg. Rats were then subjected to a 15‐min period of either hypercapnia, by addition of CO2 (2.5, 5, or 10%) to the ventilator gases, or hypocapnia (Pco2 < 30 mm Hg), by increasing the ventilation rate and volume. pHe responded inversely to arterial Pco2 and was well described (r2 = 0.91) by the Henderson‐Hassel‐balch equation, assuming a pKa for the bicarbonate buffer system of 6.1 and a solubility coefficient for CO2 of 0.031. This confirms the view that the bicarbonate buffer system is dominant in the interstitial space. pHi responded inversely and linearly to arterial Pco2. The intracellular effect was muted as compared with pHe (slope = ‐0.0025, r2 = 0.60). pHe and pHi values were also monitored during the first 12 min of ischemia produced by cardiac arrest. pHe decreases more rapidly than pHi during the first 5 min of ischemia. After 12 min of ischemia, pHe and pHi values were not significantly different (6.44 ± 0.02 and 6.44 ± 0.03, respectively). The limitations, advantages, and future uses of the combined microdialysis/31P‐NMR method for measurement of pHe and pHi are discussed.

Journal

Journal of NeurochemistryWiley

Published: Jan 1, 1999

Keywords: ; ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off