Biotic interactions have been considered as an important factor to be included in species distribution modelling, but little is known about how different types of interaction or different strategies for modelling affect model performance. This study compares different methods for including interspecific interactions in distribution models for bees, their brood parasites, and the plants they pollinate. Host–parasite interactions among bumble bees (genus Bombus: generalist pollinators and brood parasites) and specialist plant–pollinator interactions between Centris bees and Krameria flowers were used as case studies. We used 7 different modelling algorithms available in the BIOMOD R package. For Bombus, the inclusion of interacting species distributions generally increased model predictive accuracy. The improvement was better when the interacting species was included with its raw distribution rather than with its modeled suitability. However, incorporating the distributions of non‐interacting species sometimes resulted in similarly increased model accuracy despite their being no significance of any interaction for the distribution. For the Centris‐Krameria system the best strategy for modelling biotic interactions was to include the interacting species model‐predicted values. However, the results were less consistent than those for Bombus species, and most models including biotic interactions showed no significant improvement over abiotic models. Our results are consistent with previous studies showing that biotic interactions can be important in structuring species distributions at regional scales. However, correlations between species distributions are not necessarily indicative of interactions. Therefore, choosing the correct biotic information, based on biological and ecological knowledge, is critical to improve the accuracy of species distribution models and forecast distribution change.
Ecography – Wiley
Published: Jun 1, 2013
It’s your single place to instantly
discover and read the research
that matters to you.
Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.
All for just $49/month
Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly
Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.
Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.
Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.
All the latest content is available, no embargo periods.
“Hi guys, I cannot tell you how much I love this resource. Incredible. I really believe you've hit the nail on the head with this site in regards to solving the research-purchase issue.”
Daniel C.
“Whoa! It’s like Spotify but for academic articles.”
@Phil_Robichaud
“I must say, @deepdyve is a fabulous solution to the independent researcher's problem of #access to #information.”
@deepthiw
“My last article couldn't be possible without the platform @deepdyve that makes journal papers cheaper.”
@JoseServera
DeepDyve Freelancer | DeepDyve Pro | |
---|---|---|
Price | FREE | $49/month |
Save searches from | ||
Create lists to | ||
Export lists, citations | ||
Read DeepDyve articles | Abstract access only | Unlimited access to over |
20 pages / month | ||
PDF Discount | 20% off | |
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.
ok to continue