Improved Performance of Printable Perovskite Solar Cells with Bifunctional Conjugated Organic Molecule

Improved Performance of Printable Perovskite Solar Cells with Bifunctional Conjugated Organic... A bifunctional conjugated organic molecule 4‐(aminomethyl) benzoic acid hydroiodide (AB) is designed and employed as an organic cation in organic–inorganic halide perovskite materials. Compared with the monofunctional cation benzylamine hydroiodide (BA) and the nonconjugated bifunctional organic molecule 5‐ammonium valeric acid, devices based on AB‐MAPbI3 show a good stability and a superior power conversion efficiency of 15.6% with a short‐circuit current of 23.4 mA cm−2, an open‐circuit voltage of 0.94 V, and a fill factor of 0.71. The bifunctional conjugated cation not only benefits the growth of perovskite crystals in the mesoporous network, but also facilitates the charge transport. This investigation helps explore new approaches to rational design of novel organic cations for perovskite materials. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advanced Materials Wiley

Improved Performance of Printable Perovskite Solar Cells with Bifunctional Conjugated Organic Molecule

Loading next page...
 
/lp/wiley/improved-performance-of-printable-perovskite-solar-cells-with-0mkw848pPZ
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
© 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
ISSN
0935-9648
eISSN
1521-4095
D.O.I.
10.1002/adma.201705786
Publisher site
See Article on Publisher Site

Abstract

A bifunctional conjugated organic molecule 4‐(aminomethyl) benzoic acid hydroiodide (AB) is designed and employed as an organic cation in organic–inorganic halide perovskite materials. Compared with the monofunctional cation benzylamine hydroiodide (BA) and the nonconjugated bifunctional organic molecule 5‐ammonium valeric acid, devices based on AB‐MAPbI3 show a good stability and a superior power conversion efficiency of 15.6% with a short‐circuit current of 23.4 mA cm−2, an open‐circuit voltage of 0.94 V, and a fill factor of 0.71. The bifunctional conjugated cation not only benefits the growth of perovskite crystals in the mesoporous network, but also facilitates the charge transport. This investigation helps explore new approaches to rational design of novel organic cations for perovskite materials.

Journal

Advanced MaterialsWiley

Published: Jan 1, 2018

Keywords: ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off