Improved Corners with Multi‐Channel Signed Distance Fields

Improved Corners with Multi‐Channel Signed Distance Fields We propose an extension to the state‐of‐the‐art text rendering technique based on sampling a 2D signed distance field from a texture. This extension significantly improves the visual quality of sharp corners, which is the most problematic feature to reproduce for the original technique. We achieve this by using a combination of multiple distance fields in conjunction, which together provide a more thorough representation of the given glyph's (or any other 2D shape's) geometry. This multi‐channel distance field representation is described along with its application in shader‐based rendering. The rendering process itself remains very simple and efficient, and is fully compatible with previous monochrome distance fields. The introduced method of multi‐channel distance field construction requires a vector representation of the input shape. A comparative measurement of rendering quality shows that the error in the output image can be reduced by up to several orders of magnitude. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Computer Graphics Forum Wiley

Improved Corners with Multi‐Channel Signed Distance Fields

Loading next page...
 
/lp/wiley/improved-corners-with-multi-channel-signed-distance-fields-zuXT63xMDM
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
© 2018 The Eurographics Association and John Wiley & Sons Ltd.
ISSN
0167-7055
eISSN
1467-8659
D.O.I.
10.1111/cgf.13265
Publisher site
See Article on Publisher Site

Abstract

We propose an extension to the state‐of‐the‐art text rendering technique based on sampling a 2D signed distance field from a texture. This extension significantly improves the visual quality of sharp corners, which is the most problematic feature to reproduce for the original technique. We achieve this by using a combination of multiple distance fields in conjunction, which together provide a more thorough representation of the given glyph's (or any other 2D shape's) geometry. This multi‐channel distance field representation is described along with its application in shader‐based rendering. The rendering process itself remains very simple and efficient, and is fully compatible with previous monochrome distance fields. The introduced method of multi‐channel distance field construction requires a vector representation of the input shape. A comparative measurement of rendering quality shows that the error in the output image can be reduced by up to several orders of magnitude.

Journal

Computer Graphics ForumWiley

Published: Jan 1, 2018

Keywords: ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off