Identification of mutants in metabolically regulated gene expression

Identification of mutants in metabolically regulated gene expression Sucrose is the main transported form of assimilates, but, significantly, it also regulates a variety of processes such as photosynthesis and carbon or nitrogen storage. The effects of high sucrose levels are mediated directly by modulation of gene expression. The regulation of storage protein accumulation, here patatin from potato tubers, was used as a model system to study sucrose mediated signal transduction. The transcriptional regulation of patatin genes is conserved in transgenic Arabidopsis, as shown by the analysis of expression of two classes of patatin promoters fused to uidA. Two distinctly different patterns of gene expression were observed. In roots, class I promoter expression is strongly dependent on the exogenous supply of sugars. 3‐O‐methylglucose induction indicates that the sensor is located upstream of hexokinase. In contrast, the class II promoter is constitutively active in root tips and hydatodes. The progeny of a homozygous class I line was mutagenized with ethyl methane sulphonate and screened for signal transduction mutants using a non‐destructive screening system for GUS activity. Four mutants showing reduced sucrose responses (rsr) and two mutants with modified expression patterns (mep) regarding the root tip were identified. In backcross analyses, it was shown that rsr1‐1 carries a recessive trans mutation whereas rsr4‐1 seems to be a semi‐dominant trans mutation in sugar‐mediated gene regulation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Plant Journal Wiley

Identification of mutants in metabolically regulated gene expression

Loading next page...
 
/lp/wiley/identification-of-mutants-in-metabolically-regulated-gene-expression-1x7OxXeKhN
Publisher
Wiley
Copyright
Copyright © 1997 Wiley Subscription Services, Inc., A Wiley Company
ISSN
0960-7412
eISSN
1365-313X
D.O.I.
10.1046/j.1365-313X.1997.11010053.x
Publisher site
See Article on Publisher Site

Abstract

Sucrose is the main transported form of assimilates, but, significantly, it also regulates a variety of processes such as photosynthesis and carbon or nitrogen storage. The effects of high sucrose levels are mediated directly by modulation of gene expression. The regulation of storage protein accumulation, here patatin from potato tubers, was used as a model system to study sucrose mediated signal transduction. The transcriptional regulation of patatin genes is conserved in transgenic Arabidopsis, as shown by the analysis of expression of two classes of patatin promoters fused to uidA. Two distinctly different patterns of gene expression were observed. In roots, class I promoter expression is strongly dependent on the exogenous supply of sugars. 3‐O‐methylglucose induction indicates that the sensor is located upstream of hexokinase. In contrast, the class II promoter is constitutively active in root tips and hydatodes. The progeny of a homozygous class I line was mutagenized with ethyl methane sulphonate and screened for signal transduction mutants using a non‐destructive screening system for GUS activity. Four mutants showing reduced sucrose responses (rsr) and two mutants with modified expression patterns (mep) regarding the root tip were identified. In backcross analyses, it was shown that rsr1‐1 carries a recessive trans mutation whereas rsr4‐1 seems to be a semi‐dominant trans mutation in sugar‐mediated gene regulation.

Journal

The Plant JournalWiley

Published: Jan 1, 1997

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off