Identification of a small‐molecule ligand of β‐arrestin1 as an inhibitor of stromal fibroblast cell migration accelerated by cancer cells

Identification of a small‐molecule ligand of β‐arrestin1 as an inhibitor of stromal... Stromal fibroblasts, which occupy a major portion of the tumor microenvironment, play an important role in cancer metastasis. Thus, targeting of these fibroblasts activated by cancer cells (carcinoma‐associated fibroblasts; CAFs) might aid in the improved treatment of cancer metastasis. NIH3T3 fibroblasts cocultured with MCF7 cells displayed enhanced migration compared to NIH3T3 fibroblasts cultured alone. We used this system to identify the small‐molecule inhibitors responsible for their enhanced migration, a characteristic of CAFs. We selected β‐arrestin1, which showed high expression in cocultured cells, as a molecular target for such inhibitors. Cofilin, a protein downstream of β‐arrestin1, is activated/dephosphorylated in this condition. The small‐molecule ligands of β‐arrestin1 obtained by chemical array were then examined using a wound healing coculture assay. RKN5755 was identified as a selective inhibitor of activated fibroblasts. RKN5755 inhibited the enhanced migration of fibroblasts cocultured with cancer cells by binding to β‐arrestin1 and interfering with β‐arrestin1‐mediated cofilin signaling pathways. Therefore, these results demonstrate the role of β‐arrestin1 in the activation of fibroblasts and inhibiting this protein by small molecule inhibitor might be a potential therapeutic target for the stromal fibroblast activation (cancer–stroma interaction). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Cancer Medicine Wiley

Identification of a small‐molecule ligand of β‐arrestin1 as an inhibitor of stromal fibroblast cell migration accelerated by cancer cells

Loading next page...
 
/lp/wiley/identification-of-a-small-molecule-ligand-of-arrestin1-as-an-inhibitor-MaednRhzEe
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
© 2018 Published by John Wiley & Sons Ltd.
ISSN
2045-7634
eISSN
2045-7634
D.O.I.
10.1002/cam4.1339
Publisher site
See Article on Publisher Site

Abstract

Stromal fibroblasts, which occupy a major portion of the tumor microenvironment, play an important role in cancer metastasis. Thus, targeting of these fibroblasts activated by cancer cells (carcinoma‐associated fibroblasts; CAFs) might aid in the improved treatment of cancer metastasis. NIH3T3 fibroblasts cocultured with MCF7 cells displayed enhanced migration compared to NIH3T3 fibroblasts cultured alone. We used this system to identify the small‐molecule inhibitors responsible for their enhanced migration, a characteristic of CAFs. We selected β‐arrestin1, which showed high expression in cocultured cells, as a molecular target for such inhibitors. Cofilin, a protein downstream of β‐arrestin1, is activated/dephosphorylated in this condition. The small‐molecule ligands of β‐arrestin1 obtained by chemical array were then examined using a wound healing coculture assay. RKN5755 was identified as a selective inhibitor of activated fibroblasts. RKN5755 inhibited the enhanced migration of fibroblasts cocultured with cancer cells by binding to β‐arrestin1 and interfering with β‐arrestin1‐mediated cofilin signaling pathways. Therefore, these results demonstrate the role of β‐arrestin1 in the activation of fibroblasts and inhibiting this protein by small molecule inhibitor might be a potential therapeutic target for the stromal fibroblast activation (cancer–stroma interaction).

Journal

Cancer MedicineWiley

Published: Jan 1, 2018

Keywords: ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial