Hygroscopicity‐ and Size‐Resolved Measurements of Submicron Aerosol on the East Coast of the United States

Hygroscopicity‐ and Size‐Resolved Measurements of Submicron Aerosol on the East Coast of the... Atmospheric measurements of aerosol size‐resolved hygroscopicity at submicron sizes are carried out at the United States Army Corps of Engineers Field Research Facility in Duck, North Carolina. The scientific aim of the field deployment is to gain improved understanding of the springtime advection of aerosols from the East Coast of the United States over the Atlantic and help to constrain assessments of anthropogenic particle contributions to the marine boundary layer aerosol budget. Air mass back trajectories show that the aerosol sampled at the coast is largely of continental origin that either gets transported directly from the land or spends some time over the Atlantic Ocean. Aerosol size‐resolved hygroscopicity measurements are consistent with air masses of both continental and marine background that are heavily influenced by the continental outflow. Aitken and accumulation mode mean diameters range from 49.1 ± 1.7 nm to 66.9 ± 0.8 nm and 142.8 ± 1.1 nm to 155.0 ± 2.8 nm, respectively. Hygroscopicity distributions for 96 nm, 188 nm, and 284 nm dry‐sized particles show the mode hygroscopicity parameter range from 0.20 ± 0.01 to 0.54 ± 0.03, suggesting the presence of anthropogenic aerosols. We have used the method described by Royalty et al. (2017) to decompose the hygroscopicity distributions into three distinct classes based on the ambient aerosol hygroscopic properties relative to the hygroscopic properties of a reference compound. The method shows that continental outflow heavily influences aerosol chemical and physical properties at the East Coast, with hygroscopicities of submicron aerosols consistent with sulfate‐containing species (62% to 83%), with small contributions from sodium‐ and carbon‐containing particles (up to 9% and 37%, respectively). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Geophysical Research: Atmospheres Wiley

Hygroscopicity‐ and Size‐Resolved Measurements of Submicron Aerosol on the East Coast of the United States

Loading next page...
 
/lp/wiley/hygroscopicity-and-size-resolved-measurements-of-submicron-aerosol-on-mDzzv8nJnY
Publisher
Wiley
Copyright
©2018. American Geophysical Union. All Rights Reserved.
ISSN
2169-897X
eISSN
2169-8996
D.O.I.
10.1002/2017JD027702
Publisher site
See Article on Publisher Site

Abstract

Atmospheric measurements of aerosol size‐resolved hygroscopicity at submicron sizes are carried out at the United States Army Corps of Engineers Field Research Facility in Duck, North Carolina. The scientific aim of the field deployment is to gain improved understanding of the springtime advection of aerosols from the East Coast of the United States over the Atlantic and help to constrain assessments of anthropogenic particle contributions to the marine boundary layer aerosol budget. Air mass back trajectories show that the aerosol sampled at the coast is largely of continental origin that either gets transported directly from the land or spends some time over the Atlantic Ocean. Aerosol size‐resolved hygroscopicity measurements are consistent with air masses of both continental and marine background that are heavily influenced by the continental outflow. Aitken and accumulation mode mean diameters range from 49.1 ± 1.7 nm to 66.9 ± 0.8 nm and 142.8 ± 1.1 nm to 155.0 ± 2.8 nm, respectively. Hygroscopicity distributions for 96 nm, 188 nm, and 284 nm dry‐sized particles show the mode hygroscopicity parameter range from 0.20 ± 0.01 to 0.54 ± 0.03, suggesting the presence of anthropogenic aerosols. We have used the method described by Royalty et al. (2017) to decompose the hygroscopicity distributions into three distinct classes based on the ambient aerosol hygroscopic properties relative to the hygroscopic properties of a reference compound. The method shows that continental outflow heavily influences aerosol chemical and physical properties at the East Coast, with hygroscopicities of submicron aerosols consistent with sulfate‐containing species (62% to 83%), with small contributions from sodium‐ and carbon‐containing particles (up to 9% and 37%, respectively).

Journal

Journal of Geophysical Research: AtmospheresWiley

Published: Jan 16, 2018

Keywords: ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off