Hydrogeology of thrust faults and crystalline thrust sheets: Results of combined field and modeling studies

Hydrogeology of thrust faults and crystalline thrust sheets: Results of combined field and... Field, laboratory, and modeling studies of faulted rock yield insight into the hydraulic character of thrust faults. Late‐stage faults comprise foliated and subparallel faults, with clay‐rich gouge and fracture zones, that yield interpenetrating layers of low‐permeability gouge and higher‐permeability damage zones. Laboratory testing suggests a permeability contrast of two orders of magnitude between gouge and damage zones. Layers of differing permeability lead to overall permeability anisotropy with maximum permeability within the plane of the fault and minimum permeability perpendicular to the fault plane. Numerical modeling of regional‐scale fluid flow and heat transport illustrates the impact of fault zone hydrogeology on fluid flux, fluid pore pressure, and temperature in the vicinity of a crystalline thrust sheet. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Geophysical Research Letters Wiley

Hydrogeology of thrust faults and crystalline thrust sheets: Results of combined field and modeling studies

Loading next page...
 
/lp/wiley/hydrogeology-of-thrust-faults-and-crystalline-thrust-sheets-results-of-Jy9OIkER0R
Publisher
Wiley
Copyright
Copyright © 1991 by the American Geophysical Union.
ISSN
0094-8276
eISSN
1944-8007
DOI
10.1029/91GL00950
Publisher site
See Article on Publisher Site

Abstract

Field, laboratory, and modeling studies of faulted rock yield insight into the hydraulic character of thrust faults. Late‐stage faults comprise foliated and subparallel faults, with clay‐rich gouge and fracture zones, that yield interpenetrating layers of low‐permeability gouge and higher‐permeability damage zones. Laboratory testing suggests a permeability contrast of two orders of magnitude between gouge and damage zones. Layers of differing permeability lead to overall permeability anisotropy with maximum permeability within the plane of the fault and minimum permeability perpendicular to the fault plane. Numerical modeling of regional‐scale fluid flow and heat transport illustrates the impact of fault zone hydrogeology on fluid flux, fluid pore pressure, and temperature in the vicinity of a crystalline thrust sheet.

Journal

Geophysical Research LettersWiley

Published: May 1, 1991

References

  • Groundwater flow systems in mountainous terrain 1. Numerical modeling technique
    Forster, Forster; Smith, Smith

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off