Human body models for validation studies of deep hyperthermia

Human body models for validation studies of deep hyperthermia Hyperthermia is a therapeutic technique used to enhance the efficacy of radiotherapy and chemotherapy in the treatment of oncological pathologies, by way of a temperature increase of 41–43°C in the target region. To validate hyperthermia devices, as well as the numerical codes used to simulate hyperthermia treatments, simple phantoms are used. This article considers the influence of phantoms’ geometry, dimensions, and considered organs, on the electromagnetic power absorption. Aim of the study was to evaluate the representativeness of such simple phantoms in terms of the power absorbed by the organs target of deep hyperthermia treatments (i.e., uterus and bladder). In particular, attention was posed on the influence of the visceral fat on the distribution of the absorbed power among the different organs. Results show that geometry and dimension does not influence the distribution of the absorbed power among the different tissues/organs (the maximum difference is 4% in the bladder). However, neglecting the presence of visceral fat greatly changes the electromagnetic power absorbed by the target organs, leading to a 23% increase of the percentage power absorbed in the uterus with respect to the complete model. This percent value corresponded to an increase in the volume‐averaged SAR of 140%. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Rf and Microwave Computer-Aided Engineering Wiley

Human body models for validation studies of deep hyperthermia

Loading next page...
 
/lp/wiley/human-body-models-for-validation-studies-of-deep-hyperthermia-Zlr28ktoMQ
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
© 2018 Wiley Periodicals, Inc.
ISSN
1096-4290
eISSN
1099-047X
D.O.I.
10.1002/mmce.21207
Publisher site
See Article on Publisher Site

Abstract

Hyperthermia is a therapeutic technique used to enhance the efficacy of radiotherapy and chemotherapy in the treatment of oncological pathologies, by way of a temperature increase of 41–43°C in the target region. To validate hyperthermia devices, as well as the numerical codes used to simulate hyperthermia treatments, simple phantoms are used. This article considers the influence of phantoms’ geometry, dimensions, and considered organs, on the electromagnetic power absorption. Aim of the study was to evaluate the representativeness of such simple phantoms in terms of the power absorbed by the organs target of deep hyperthermia treatments (i.e., uterus and bladder). In particular, attention was posed on the influence of the visceral fat on the distribution of the absorbed power among the different organs. Results show that geometry and dimension does not influence the distribution of the absorbed power among the different tissues/organs (the maximum difference is 4% in the bladder). However, neglecting the presence of visceral fat greatly changes the electromagnetic power absorbed by the target organs, leading to a 23% increase of the percentage power absorbed in the uterus with respect to the complete model. This percent value corresponded to an increase in the volume‐averaged SAR of 140%.

Journal

International Journal of Rf and Microwave Computer-Aided EngineeringWiley

Published: Jan 1, 2018

Keywords: ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial