How does elevated ozone impact soybean? A meta‐analysis of photosynthesis, growth and yield

How does elevated ozone impact soybean? A meta‐analysis of photosynthesis, growth and yield ABSTRACT Surface ozone concentrations ((O3)) during the growing season in much of the northern temperate zone reach mean peak daily concentrations of 60 p.p.b. Concentrations are predicted to continue to rise over much of the globe during the next 50 years. Although these low levels of ozone may not induce visible symptoms on most vegetation, they can result in substantial losses of production and reproductive output. Establishing the vulnerability of vegetation to rising background ozone is complicated by marked differences in findings between individual studies. Ozone effects are influenced by exposure dynamics, nutrient and moisture conditions, and the species and cultivars that are investigated. Meta‐analytic techniques provide an objective means to quantitatively summarize treatment responses. Soybean has been the subject of many studies of ozone effects. It is both the most widely planted dicotyledonous crop and a model for other C3 annual plants. Meta‐analytic techniques were used to quantitatively summarize the response of soybean to an average, chronic ozone exposure of 70 p.p.b., from 53 peer‐reviewed studies. At maturity, the average shoot biomass was decreased 34% and seed yield was 24% lower. Even in studies where (O3) was < 60 p.p.b., there was a significant decrease in biomass and seed production. At low (O3), decreased production corresponded to a decrease in leaf photosynthesis, but in higher (O3) the larger loss in production was associated with decreases in both leaf photosynthesis and leaf area. The impact of ozone increased with developmental stage, with little effect on vegetative growth and the greatest effect evident at completion of seed filling. Other stress treatments, including UV‐B and drought, did not alter the ozone response. Elevated carbon dioxide significantly decreased ozone‐induced losses, which may be explained by a significant decrease in stomatal conductance. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Cell & Environment Wiley

How does elevated ozone impact soybean? A meta‐analysis of photosynthesis, growth and yield

Loading next page...
 
/lp/wiley/how-does-elevated-ozone-impact-soybean-a-meta-analysis-of-mCe4Sc5dvo
Publisher
Wiley
Copyright
Copyright © 2003 Wiley Subscription Services, Inc., A Wiley Company
ISSN
0140-7791
eISSN
1365-3040
D.O.I.
10.1046/j.0016-8025.2003.01056.x
Publisher site
See Article on Publisher Site

Abstract

ABSTRACT Surface ozone concentrations ((O3)) during the growing season in much of the northern temperate zone reach mean peak daily concentrations of 60 p.p.b. Concentrations are predicted to continue to rise over much of the globe during the next 50 years. Although these low levels of ozone may not induce visible symptoms on most vegetation, they can result in substantial losses of production and reproductive output. Establishing the vulnerability of vegetation to rising background ozone is complicated by marked differences in findings between individual studies. Ozone effects are influenced by exposure dynamics, nutrient and moisture conditions, and the species and cultivars that are investigated. Meta‐analytic techniques provide an objective means to quantitatively summarize treatment responses. Soybean has been the subject of many studies of ozone effects. It is both the most widely planted dicotyledonous crop and a model for other C3 annual plants. Meta‐analytic techniques were used to quantitatively summarize the response of soybean to an average, chronic ozone exposure of 70 p.p.b., from 53 peer‐reviewed studies. At maturity, the average shoot biomass was decreased 34% and seed yield was 24% lower. Even in studies where (O3) was < 60 p.p.b., there was a significant decrease in biomass and seed production. At low (O3), decreased production corresponded to a decrease in leaf photosynthesis, but in higher (O3) the larger loss in production was associated with decreases in both leaf photosynthesis and leaf area. The impact of ozone increased with developmental stage, with little effect on vegetative growth and the greatest effect evident at completion of seed filling. Other stress treatments, including UV‐B and drought, did not alter the ozone response. Elevated carbon dioxide significantly decreased ozone‐induced losses, which may be explained by a significant decrease in stomatal conductance.

Journal

Plant Cell & EnvironmentWiley

Published: Aug 1, 2003

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off