High‐throughput serum proteomics for the identification of protein biomarkers of mortality in older men

High‐throughput serum proteomics for the identification of protein biomarkers of mortality in... The biological perturbations associated with incident mortality are not well elucidated, and there are limited biomarkers for the prediction of mortality. We used a novel high‐throughput proteomics approach to identify serum peptides and proteins associated with 5‐year mortality in community‐dwelling men age ≥65 years who participated in a longitudinal observational study of musculoskeletal aging (Osteoporotic Fractures in Men: MrOS). In a discovery phase, serum specimens collected at baseline in 2473 men were analyzed using liquid chromatography–ion mobility–mass spectrometry, and incident mortality in the subsequent 5 years was ascertained by tri‐annual questionnaire. Rigorous statistical methods were utilized to identify 56 peptides (31 proteins) that were associated with 5‐year mortality. In an independent replication phase, selected reaction monitoring was used to examine 21 of those peptides in baseline serum from 750 additional men; 81% of those peptides remained significantly associated with mortality. Mortality‐associated proteins included a variety involved in inflammation or complement activation; several have been previously linked to mortality (e.g., C‐reactive protein, alpha 1‐antichymotrypsin) and others are not previously known to be associated with mortality. Other novel proteins of interest included pregnancy‐associated plasma protein, VE‐cadherin, leucine‐rich α‐2 glycoprotein 1, vinculin, vitronectin, mast/stem cell growth factor receptor, and Saa4. A panel of peptides improved the predictive value of a commonly used clinical predictor of mortality. Overall, these results suggest that complex inflammatory pathways, and proteins in other pathways, are linked to 5‐year mortality risk. This work may serve to identify novel biomarkers for near‐term mortality. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Aging Cell Wiley

High‐throughput serum proteomics for the identification of protein biomarkers of mortality in older men

Loading next page...
 
/lp/wiley/high-throughput-serum-proteomics-for-the-identification-of-protein-7o5LjP3e5p
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
Copyright © 2018 The Anatomical Society and John Wiley & Sons Ltd.
ISSN
1474-9718
eISSN
1474-9726
D.O.I.
10.1111/acel.12717
Publisher site
See Article on Publisher Site

Abstract

The biological perturbations associated with incident mortality are not well elucidated, and there are limited biomarkers for the prediction of mortality. We used a novel high‐throughput proteomics approach to identify serum peptides and proteins associated with 5‐year mortality in community‐dwelling men age ≥65 years who participated in a longitudinal observational study of musculoskeletal aging (Osteoporotic Fractures in Men: MrOS). In a discovery phase, serum specimens collected at baseline in 2473 men were analyzed using liquid chromatography–ion mobility–mass spectrometry, and incident mortality in the subsequent 5 years was ascertained by tri‐annual questionnaire. Rigorous statistical methods were utilized to identify 56 peptides (31 proteins) that were associated with 5‐year mortality. In an independent replication phase, selected reaction monitoring was used to examine 21 of those peptides in baseline serum from 750 additional men; 81% of those peptides remained significantly associated with mortality. Mortality‐associated proteins included a variety involved in inflammation or complement activation; several have been previously linked to mortality (e.g., C‐reactive protein, alpha 1‐antichymotrypsin) and others are not previously known to be associated with mortality. Other novel proteins of interest included pregnancy‐associated plasma protein, VE‐cadherin, leucine‐rich α‐2 glycoprotein 1, vinculin, vitronectin, mast/stem cell growth factor receptor, and Saa4. A panel of peptides improved the predictive value of a commonly used clinical predictor of mortality. Overall, these results suggest that complex inflammatory pathways, and proteins in other pathways, are linked to 5‐year mortality risk. This work may serve to identify novel biomarkers for near‐term mortality.

Journal

Aging CellWiley

Published: Jan 1, 2018

Keywords: ; ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial