Growth enhancement due to global atmospheric change as predicted by terrestrial ecosystem models: consistent with US forest inventory data

Growth enhancement due to global atmospheric change as predicted by terrestrial ecosystem models:... Small reported growth enhancement factors based on analyses of forest inventory data from the eastern USA (Caspersen et al. 2000, Science, 290, 1148–1151) have been interpreted as evidence against CO2 fertilization in natural forests. We show to the contrary that growth enhancement in response to rising CO2, as found in ecosystems with experimental CO2 enrichment and implemented in terrestrial ecosystem models, is consistent with the data that have been presented within their uncertainties. Comparing forest inventory data with results of an empirical model of age‐dependent biomass accumulation, we find that growth enhancement of plausible magnitude could not be detected in these data, even if it were present. Although forest regrowth due to land‐use change is recognized as an important cause of carbon uptake by eastern US forests, forest inventory data do not provide a basis for eliminating environmentally induced growth enhancement as a substantial contribution to the global terrestrial carbon sink. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Global Change Biology Wiley

Growth enhancement due to global atmospheric change as predicted by terrestrial ecosystem models: consistent with US forest inventory data

Loading next page...
 
/lp/wiley/growth-enhancement-due-to-global-atmospheric-change-as-predicted-by-opLM9ODsaL
Publisher
Wiley
Copyright
Copyright © 2002 Wiley Subscription Services
ISSN
1354-1013
eISSN
1365-2486
DOI
10.1046/j.1354-1013.2002.00505.x
Publisher site
See Article on Publisher Site

Abstract

Small reported growth enhancement factors based on analyses of forest inventory data from the eastern USA (Caspersen et al. 2000, Science, 290, 1148–1151) have been interpreted as evidence against CO2 fertilization in natural forests. We show to the contrary that growth enhancement in response to rising CO2, as found in ecosystems with experimental CO2 enrichment and implemented in terrestrial ecosystem models, is consistent with the data that have been presented within their uncertainties. Comparing forest inventory data with results of an empirical model of age‐dependent biomass accumulation, we find that growth enhancement of plausible magnitude could not be detected in these data, even if it were present. Although forest regrowth due to land‐use change is recognized as an important cause of carbon uptake by eastern US forests, forest inventory data do not provide a basis for eliminating environmentally induced growth enhancement as a substantial contribution to the global terrestrial carbon sink.

Journal

Global Change BiologyWiley

Published: Jan 1, 2002

Keywords: ; ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off