Groundwater use and salinization with grassland afforestation

Groundwater use and salinization with grassland afforestation Vegetation changes, particularly transitions between tree‐ and grass‐dominated states, can alter ecosystem water balances and soluble salt fluxes. Here we outline a general predictive framework for understanding salinization of afforested grasslands based on biophysical, hydrologic, and edaphic factors. We tested this framework in 20 paired grassland and adjacent afforested plots across ten sites in the Argentine Pampas. Rapid salinization of groundwater and soils in afforested plots was associated with increased evapotranspiration and groundwater consumption by trees, with maximum salinization occurring on intermediately textured soils. Afforested plots (10–100 ha in size) showed 4–19‐fold increases in groundwater salinity on silty upland soils but 50% of the days, and depressed the water table 38 cm on average compared to the adjacent grassland. Soil cores and vertical electrical soundings indicated that ≈6 kg m−2 of salts accumulated close to the water table and suggested that salinization resulted from the exclusion of fresh groundwater solutes by tree roots. Groundwater use with afforestation in the Pampas and in other regions around the world can enhance primary production and provide a tool for flood control. However, our framework and experimental data also suggest that afforestation can compromise the quality of soils and water resources in predictable ways based on water use, climate, and soil texture. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Global Change Biology Wiley

Groundwater use and salinization with grassland afforestation

Loading next page...
1
 
/lp/wiley/groundwater-use-and-salinization-with-grassland-afforestation-0QFiAG0gg8
Publisher site
See Article on Publisher Site

Abstract

Vegetation changes, particularly transitions between tree‐ and grass‐dominated states, can alter ecosystem water balances and soluble salt fluxes. Here we outline a general predictive framework for understanding salinization of afforested grasslands based on biophysical, hydrologic, and edaphic factors. We tested this framework in 20 paired grassland and adjacent afforested plots across ten sites in the Argentine Pampas. Rapid salinization of groundwater and soils in afforested plots was associated with increased evapotranspiration and groundwater consumption by trees, with maximum salinization occurring on intermediately textured soils. Afforested plots (10–100 ha in size) showed 4–19‐fold increases in groundwater salinity on silty upland soils but 50% of the days, and depressed the water table 38 cm on average compared to the adjacent grassland. Soil cores and vertical electrical soundings indicated that ≈6 kg m−2 of salts accumulated close to the water table and suggested that salinization resulted from the exclusion of fresh groundwater solutes by tree roots. Groundwater use with afforestation in the Pampas and in other regions around the world can enhance primary production and provide a tool for flood control. However, our framework and experimental data also suggest that afforestation can compromise the quality of soils and water resources in predictable ways based on water use, climate, and soil texture.

Journal

Global Change BiologyWiley

Published: Aug 1, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off