Greedy forward regression for variable screening

Greedy forward regression for variable screening In the ultra‐high dimensional setting, two popular variable screening methods with the desirable sure screening property are sure independence screening (SIS) and forward regression (FR). Both are classical variable screening methods, and recently have attracted greater attention under high‐dimensional data analysis. We consider a new and simple screening method that incorporates multiple predictors at each step of forward regression, with decisions on which variables to incorporate based on the same criterion. If only one step is carried out, the new procedure reduces to SIS. Thus it can be regarded as a generalisation and unification of FR and SIS. More importantly, it preserves the sure screening property and has computational complexity similar to FR at each step, yet it can discover the relevant covariates in fewer steps. Thus it reduces the computational burden of FR drastically while retaining the advantages of the latter over SIS. Furthermore, we show that it can find all the true variables if the number of steps taken is the same as the correct model size, which is a new theoretical result even for the original FR. An extensive simulation study and application to two real data examples demonstrate excellent performance of the proposed method. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Australian & New Zealand Journal of Statistics Wiley

Greedy forward regression for variable screening

Loading next page...
 
/lp/wiley/greedy-forward-regression-for-variable-screening-jnTassmqH6
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
Copyright © 2018 Australian Statistical Publishing Association Inc.
ISSN
1369-1473
eISSN
1467-842X
D.O.I.
10.1111/anzs.12218
Publisher site
See Article on Publisher Site

Abstract

In the ultra‐high dimensional setting, two popular variable screening methods with the desirable sure screening property are sure independence screening (SIS) and forward regression (FR). Both are classical variable screening methods, and recently have attracted greater attention under high‐dimensional data analysis. We consider a new and simple screening method that incorporates multiple predictors at each step of forward regression, with decisions on which variables to incorporate based on the same criterion. If only one step is carried out, the new procedure reduces to SIS. Thus it can be regarded as a generalisation and unification of FR and SIS. More importantly, it preserves the sure screening property and has computational complexity similar to FR at each step, yet it can discover the relevant covariates in fewer steps. Thus it reduces the computational burden of FR drastically while retaining the advantages of the latter over SIS. Furthermore, we show that it can find all the true variables if the number of steps taken is the same as the correct model size, which is a new theoretical result even for the original FR. An extensive simulation study and application to two real data examples demonstrate excellent performance of the proposed method.

Journal

Australian & New Zealand Journal of StatisticsWiley

Published: Jan 1, 2018

Keywords: ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off