Grain boundary kinetics in polycrystalline material using orientation dependent interface energy

Grain boundary kinetics in polycrystalline material using orientation dependent interface energy The Polycrystalline materials grain boundary structure, crystalline texture and grain surface morphology, each plays an important role in interface transport. Among the different surface evolution phenomenas, the objective of the current work is to study the kinetics of grooving by surface diffusion only. Most of the existing theoretical and computational models use two dimensional grooving with one dimensional surface evolution. Hackl, et al. [2] have presented a novel variational model of surface motion using a thermodynamic extremum principle for grooving and wetting under diffusion. This model is further extended to a three dimensional grain structure using two dimensional surface evolution [1].In this paper, the kinetics of grooving for a periodic polycrystalline aggregate is studied. An ansatz function for grain boundary energy is defined as a functional of grain orientation and boundary inclination. For such orientation dependent grain boundary energy, Herring's relation must be satisfied locally at each triple point of intersecting boundaries thus we have four equations at each node in a representative volume element(RVE). Such an overdetermined system is solved using a non‐linear optimization method with weak constraints for the grain boundary energies. The evolution of surface grooves is studied with isotropic surface energy and mobility. The effect of line mobility on surface evolution is also studied for the chosen RVE. A comparison is made between orientation dependent grain boundary energies and isotropic grain boundary energies. (© 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim) http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Proceedings in Applied Mathematics & Mechanics Wiley

Grain boundary kinetics in polycrystalline material using orientation dependent interface energy

Loading next page...
 
/lp/wiley/grain-boundary-kinetics-in-polycrystalline-material-using-orientation-HrSgQ35m7I
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
Copyright © 2017 Wiley Subscription Services
ISSN
1617-7061
eISSN
1617-7061
D.O.I.
10.1002/pamm.201710208
Publisher site
See Article on Publisher Site

Abstract

The Polycrystalline materials grain boundary structure, crystalline texture and grain surface morphology, each plays an important role in interface transport. Among the different surface evolution phenomenas, the objective of the current work is to study the kinetics of grooving by surface diffusion only. Most of the existing theoretical and computational models use two dimensional grooving with one dimensional surface evolution. Hackl, et al. [2] have presented a novel variational model of surface motion using a thermodynamic extremum principle for grooving and wetting under diffusion. This model is further extended to a three dimensional grain structure using two dimensional surface evolution [1].In this paper, the kinetics of grooving for a periodic polycrystalline aggregate is studied. An ansatz function for grain boundary energy is defined as a functional of grain orientation and boundary inclination. For such orientation dependent grain boundary energy, Herring's relation must be satisfied locally at each triple point of intersecting boundaries thus we have four equations at each node in a representative volume element(RVE). Such an overdetermined system is solved using a non‐linear optimization method with weak constraints for the grain boundary energies. The evolution of surface grooves is studied with isotropic surface energy and mobility. The effect of line mobility on surface evolution is also studied for the chosen RVE. A comparison is made between orientation dependent grain boundary energies and isotropic grain boundary energies. (© 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Journal

Proceedings in Applied Mathematics & MechanicsWiley

Published: Jan 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off