Glutamate receptors of ganglion cells in the rabbit retina: evidence for glutamate as a bipolar cell transmitter.

Glutamate receptors of ganglion cells in the rabbit retina: evidence for glutamate as a bipolar... 1. Intracellular and extracellular recordings were obtained from ganglion cells in the rabbit retina. The effects of glutamate analogues and antagonists were studied using a perfusion method for drug application. 2. Kainate (KA) excited all ganglion cells directly and caused a large increase in firing rate. N‐Methyl‐DL‐aspartate (NMDLA) also excited ganglion cells but it was less potent and caused burst firing. 3. Quisqualate (QQ) and (RS)‐2‐amino‐3‐hydroxy‐5‐methyl‐isoxazole‐4‐propionic acid (AMPA) excited many ganglion cells and were approximately as potent as KA. Less frequently, QQ and AMPA had inhibitory effects possibly due to polysynaptic action. 4. General glutamate antagonists such as cis‐2,3‐piperidine dicarboxylic acid (PDA) and kynurenic acid blocked the light input to all ganglion cells. PDA and kynurenic acid blocked the effects of KA and NMDLA, but not carbachol, indicating that they act as glutamate antagonists in the rabbit retina. Kynurenic acid did not block the excitatory action of QQ, even though light responses were abolished. 5. Amacrine cells were depolarized by KA or QQ and less potently by NMDLA. Their light‐evoked responses were blocked by PDA. 6. We conclude that the light input to ganglion cells in the rabbit retina is predominantly mediated by KA receptors. This is consistent with the idea that ‘on’ and ‘off’ bipolar cells are excitatory and release glutamate. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Physiology Wiley

Glutamate receptors of ganglion cells in the rabbit retina: evidence for glutamate as a bipolar cell transmitter.

The Journal of Physiology, Volume 405 (1) – Nov 1, 1988

Loading next page...
 
/lp/wiley/glutamate-receptors-of-ganglion-cells-in-the-rabbit-retina-evidence-N5oqYXVTIS
Publisher
Wiley
Copyright
© 2014 The Physiological Society
ISSN
0022-3751
eISSN
1469-7793
D.O.I.
10.1113/jphysiol.1988.sp017353
Publisher site
See Article on Publisher Site

Abstract

1. Intracellular and extracellular recordings were obtained from ganglion cells in the rabbit retina. The effects of glutamate analogues and antagonists were studied using a perfusion method for drug application. 2. Kainate (KA) excited all ganglion cells directly and caused a large increase in firing rate. N‐Methyl‐DL‐aspartate (NMDLA) also excited ganglion cells but it was less potent and caused burst firing. 3. Quisqualate (QQ) and (RS)‐2‐amino‐3‐hydroxy‐5‐methyl‐isoxazole‐4‐propionic acid (AMPA) excited many ganglion cells and were approximately as potent as KA. Less frequently, QQ and AMPA had inhibitory effects possibly due to polysynaptic action. 4. General glutamate antagonists such as cis‐2,3‐piperidine dicarboxylic acid (PDA) and kynurenic acid blocked the light input to all ganglion cells. PDA and kynurenic acid blocked the effects of KA and NMDLA, but not carbachol, indicating that they act as glutamate antagonists in the rabbit retina. Kynurenic acid did not block the excitatory action of QQ, even though light responses were abolished. 5. Amacrine cells were depolarized by KA or QQ and less potently by NMDLA. Their light‐evoked responses were blocked by PDA. 6. We conclude that the light input to ganglion cells in the rabbit retina is predominantly mediated by KA receptors. This is consistent with the idea that ‘on’ and ‘off’ bipolar cells are excitatory and release glutamate.

Journal

The Journal of PhysiologyWiley

Published: Nov 1, 1988

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off