Glial calcium

Glial calcium This review summarizes current knowledge relating intracellular calcium and glial function. During steady state, glia maintain a low cytosolic calcium level by pumping calcium into intracellular stores and by extruding calcium across the plasma membrane. Glial Ca2+ increases in response to a variety of physiological stimuli. Some stimuli open membrane calcium channels, others release calcium from intracellular stores, and some do both. The temporal and spatial complexity of glial cytosolic calcium changes suggest that these responses may form the basis of an intracellular or intercellular signaling system. Cytosolic calcium rises effect changes in glial structure and function through protein kinases, phospholipases, and direct interaction with lipid and protein constituents. Ultimately, calcium signaling influences glial gene expression, development, metabolism, and regulation of the extracellular milieu. Disturbances in glial calcium homeostasis may have a role in certain pathological conditions. The discovery of complex calcium‐based glial signaling systems, capable of sensing and influencing neural activity, suggest a more integrated neuro‐glial model of information processing in the central nervous system. © 1993 Wiley‐Liss, Inc. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Glia Wiley

Loading next page...
 
/lp/wiley/glial-calcium-RHgSlth1I5
Publisher
Wiley
Copyright
Copyright © 1993 Wiley‐Liss, Inc.
ISSN
0894-1491
eISSN
1098-1136
DOI
10.1002/glia.440090202
pmid
8244537
Publisher site
See Article on Publisher Site

Abstract

This review summarizes current knowledge relating intracellular calcium and glial function. During steady state, glia maintain a low cytosolic calcium level by pumping calcium into intracellular stores and by extruding calcium across the plasma membrane. Glial Ca2+ increases in response to a variety of physiological stimuli. Some stimuli open membrane calcium channels, others release calcium from intracellular stores, and some do both. The temporal and spatial complexity of glial cytosolic calcium changes suggest that these responses may form the basis of an intracellular or intercellular signaling system. Cytosolic calcium rises effect changes in glial structure and function through protein kinases, phospholipases, and direct interaction with lipid and protein constituents. Ultimately, calcium signaling influences glial gene expression, development, metabolism, and regulation of the extracellular milieu. Disturbances in glial calcium homeostasis may have a role in certain pathological conditions. The discovery of complex calcium‐based glial signaling systems, capable of sensing and influencing neural activity, suggest a more integrated neuro‐glial model of information processing in the central nervous system. © 1993 Wiley‐Liss, Inc.

Journal

GliaWiley

Published: Oct 1, 1993

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off