Genotoxicity, biochemical, and biodistribution studies of magnesium oxide nano and microparticles in albino wistar rats after 28‐day repeated oral exposure

Genotoxicity, biochemical, and biodistribution studies of magnesium oxide nano and microparticles... Increased utilization and exposure levels of Magnesium oxide (MgO) nanoparticles (NPs) to humans and environment may raise unexpected consequences. The goal of this study was to evaluate the toxicological implications of MgO NPs and MPs after 28 day repeated oral administration in Wistar rats with three different doses (250, 500, and 1000 mg/kg). The MgO particles were characterised systematically in order to get more insights of the toxicological behaviour. MgO NPs induced significant DNA damage and aberrations in chromosomes. Moreover, hepatic enzymes released into the systemic circulation caused significant elevated levels of physiological enzymes in blood. NPs could interfere with proteins and enzymes and alter the redox balance in cell environment. Significant accumulation of Mg in all tissues and clearance via urine and faeces was noted in size dependent kinetics. Oral administration of MgO NPs altered the biochemical and genotoxic parameters in dose dependent and gender independent manner. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Toxicology Wiley

Genotoxicity, biochemical, and biodistribution studies of magnesium oxide nano and microparticles in albino wistar rats after 28‐day repeated oral exposure

Loading next page...
 
/lp/wiley/genotoxicity-biochemical-and-biodistribution-studies-of-magnesium-ogPATMC920
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
© 2018 Wiley Periodicals, Inc.
ISSN
1520-4081
eISSN
1522-7278
D.O.I.
10.1002/tox.22526
Publisher site
See Article on Publisher Site

Abstract

Increased utilization and exposure levels of Magnesium oxide (MgO) nanoparticles (NPs) to humans and environment may raise unexpected consequences. The goal of this study was to evaluate the toxicological implications of MgO NPs and MPs after 28 day repeated oral administration in Wistar rats with three different doses (250, 500, and 1000 mg/kg). The MgO particles were characterised systematically in order to get more insights of the toxicological behaviour. MgO NPs induced significant DNA damage and aberrations in chromosomes. Moreover, hepatic enzymes released into the systemic circulation caused significant elevated levels of physiological enzymes in blood. NPs could interfere with proteins and enzymes and alter the redox balance in cell environment. Significant accumulation of Mg in all tissues and clearance via urine and faeces was noted in size dependent kinetics. Oral administration of MgO NPs altered the biochemical and genotoxic parameters in dose dependent and gender independent manner.

Journal

Environmental ToxicologyWiley

Published: Jan 1, 2018

Keywords: ; ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off