Genome‐wide profiling of stored mRNA in Arabidopsis thaliana seed germination: epigenetic and genetic regulation of transcription in seed

Genome‐wide profiling of stored mRNA in Arabidopsis thaliana seed germination: epigenetic and... Summary To reveal the transcriptomes of Arabidopsis seed, comprehensive expression analysis was performed using ATH1 GeneChips (Affymetrix, Santa Clara, CA, USA). In the dry seed, more than 12 000 stored mRNA species were detected, including all ontological categories. Statistical analysis revealed that promoters of highly expressed genes in wild‐type dry seeds overrepresented abscisic acid‐responsive elements (ABREs) containing the core motif ACGT. Although the coupling element and seed‐specific enhancer RY motif alone were not prominently overrepresented in genes with high expression, the presence of these elements in combination with ABRE was associated with particularly high gene expression. The transcriptome of the imbibed seeds differed from that of the dry seed even at 6 h after seed imbibition. After imbibition many upregulated and downregulated genes were co‐regulated in clusters of three to five genes. Genes for which expression was affected by the abi5 mutation tended to be located in clusters, suggesting that transactivation by ABI5 is not restricted to a single gene, but affects other proximal genes. Furthermore, cytosine methylation was observed not only in large silent retrotransposon clusters in centromeric regions, but also in non‐centromeric silent gene clusters in the seed. These results suggest that such regions might be transcriptionally silenced by methylation or heterochromatin structures. Our analyses reveal that transcriptomes of Arabidopsis seed are characterized by multiple regulatory mechanisms: epigenetic chromatin structures, chromosomal locations (e.g. co‐regulated gene clusters) and cis‐acting elements. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Plant Journal Wiley

Genome‐wide profiling of stored mRNA in Arabidopsis thaliana seed germination: epigenetic and genetic regulation of transcription in seed

Loading next page...
 
/lp/wiley/genome-wide-profiling-of-stored-mrna-in-arabidopsis-thaliana-seed-jy2k5tslMc
Publisher
Wiley
Copyright
Copyright © 2005 Wiley Subscription Services, Inc., A Wiley Company
ISSN
0960-7412
eISSN
1365-313X
D.O.I.
10.1111/j.1365-313X.2005.02337.x
Publisher site
See Article on Publisher Site

Abstract

Summary To reveal the transcriptomes of Arabidopsis seed, comprehensive expression analysis was performed using ATH1 GeneChips (Affymetrix, Santa Clara, CA, USA). In the dry seed, more than 12 000 stored mRNA species were detected, including all ontological categories. Statistical analysis revealed that promoters of highly expressed genes in wild‐type dry seeds overrepresented abscisic acid‐responsive elements (ABREs) containing the core motif ACGT. Although the coupling element and seed‐specific enhancer RY motif alone were not prominently overrepresented in genes with high expression, the presence of these elements in combination with ABRE was associated with particularly high gene expression. The transcriptome of the imbibed seeds differed from that of the dry seed even at 6 h after seed imbibition. After imbibition many upregulated and downregulated genes were co‐regulated in clusters of three to five genes. Genes for which expression was affected by the abi5 mutation tended to be located in clusters, suggesting that transactivation by ABI5 is not restricted to a single gene, but affects other proximal genes. Furthermore, cytosine methylation was observed not only in large silent retrotransposon clusters in centromeric regions, but also in non‐centromeric silent gene clusters in the seed. These results suggest that such regions might be transcriptionally silenced by methylation or heterochromatin structures. Our analyses reveal that transcriptomes of Arabidopsis seed are characterized by multiple regulatory mechanisms: epigenetic chromatin structures, chromosomal locations (e.g. co‐regulated gene clusters) and cis‐acting elements.

Journal

The Plant JournalWiley

Published: Mar 1, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off