Access the full text.
Sign up today, get DeepDyve free for 14 days.
Yun-Kai Cheng, Wenguang Zhou, Chunfang Gao, Kenneth Lan, Yang Gao, Qingyu Wu (2009)
Biodiesel production from Jerusalem artichoke (Helianthus Tuberosus L.) tuber by heterotrophic microalgae Chlorella protothecoidesJournal of Chemical Technology & Biotechnology, 84
D. Soltis, P. Soltis (1989)
ALLOPOLYPLOID SPECIATION IN TRAGOPOGON: INSIGHTS FROM CHLOROPLAST DNAAmerican Journal of Botany, 76
C. Wagner, I. Keller, S. Wittwer, O. Selz, S. Mwaiko, L. Greuter, A. Sivasundar, O. Seehausen (2013)
Genome‐wide RAD sequence data provide unprecedented resolution of species boundaries and relationships in the Lake Victoria cichlid adaptive radiationMolecular Ecology, 22
J. Atlagić, S. Terzić (2006)
Cytogenetic study of hexaploid species Helianthus tuberosus and its F1 and BC1F1 hybrids with cultivated sunflower, H. annuus, 38
Kazuko Tamura, M. Nei (1993)
Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees.Molecular biology and evolution, 10 3
S. Wyman, Robert Jansen, J. Boore (2004)
Automatic annotation of organellar genomes with DOGMABioinformatics, 20 17
Heiser Heiser, Smith Smith (1964)
Species crosses in Helianthus : II. Polyploid speciesRhodora, 66
B. Husband, H. Sabara (2003)
Reproductive isolation between autotetraploids and their diploid progenitors in fireweed, Chamerion angustifolium (Onagraceae).The New phytologist, 161 3
D. Soltis, P. Soltis (1999)
Polyploidy: recurrent formation and genome evolution.Trends in ecology & evolution, 14 9
Heiser Heiser, Smith Smith, Clevenger Clevenger, Martin Martin (1969)
The North American sunflowersMemoirs of the Torrey Botanical Club, 22
J. Wendel, A. Schnabel, T. Seelanan (1995)
Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium).Proceedings of the National Academy of Sciences of the United States of America, 92 1
Kevin Emerson, C. Merz, J. Catchen, Paul Hohenlohe, W. Cresko, W. Bradshaw, C. Holzapfel (2010)
Resolving postglacial phylogeography using high-throughput sequencingProceedings of the National Academy of Sciences, 107
Rubén Sánchez, François Serra, Joaquín Tárraga, Ignacio Medina, J. Carbonell, Luis Pulido, A. María, S. Capella-Gutiérrez, J. Huerta-Cepas, T. Gabaldón, J. Dopazo, H. Dopazo (2011)
Phylemon 2.0: a suite of web-tools for molecular evolution, phylogenetics, phylogenomics and hypotheses testingNucleic Acids Research, 39
Sang-Tae Kim, S. Sultan, M. Donoghue (2008)
Allopolyploid speciation in Persicaria (Polygonaceae): Insights from a low-copy nuclear regionProceedings of the National Academy of Sciences, 105
F. Ronquist, J. Huelsenbeck (2003)
MrBayes 3: Bayesian phylogenetic inference under mixed modelsBioinformatics, 19 12
E. Schilling (1997)
Phylogenetic analysis of Helianthus (Asteraceae) based on chloroplast DNA restriction site dataTheoretical and Applied Genetics, 94
M. Roberfroid (2004)
Inulin-type fructans: functional food ingredients.The Journal of nutrition, 137 11 Suppl
M. DePristo, E. Banks, R. Poplin, K. Garimella, J. Maguire, C. Hartl, A. Philippakis, G. Angel, M. Rivas, M. Hanna, A. McKenna, T. Fennell, A. Kernytsky, A. Sivachenko, K. Cibulskis, S. Gabriel, D. Altshuler, M. Daly (2011)
A framework for variation discovery and genotyping using next-generation DNA sequencing dataNature genetics, 43
Iain Milne, Micha Bayer, L. Cardle, Paul Shaw, Gordon Stephen, Frank Wright, David Marshall (2009)
Tablet—next generation sequence assembly visualizationBioinformatics, 26
Ben Langmead, S. Salzberg (2012)
Fast gapped-read alignment with Bowtie 2Nature Methods, 9
D. Zerbino, E. Birney (2008)
Velvet: algorithms for de novo short read assembly using de Bruijn graphs.Genome research, 18 5
J. Atlagić, B. Dozet, D. Škorić (1993)
Meiosis and Pollen Viability in Helianthus tuberosus L. and its Hybrids with Cultivated SunflowerPlant Breeding, 111
B. Kleessen, Sandra Schwarz, Anke Boehm, Herbert Fuhrmann, A. Richter, Thomas Henle, M. Krueger (2007)
Jerusalem artichoke and chicory inulin in bakery products affect faecal microbiota of healthy volunteersBritish Journal of Nutrition, 98
J. Doyle, J. Doyle, J. Doyle, Francis Doyle (1987)
A rapid DNA isolation procedure for small amounts of fresh leaf tissue, 19
M. Anisimova, O. Gascuel (2006)
Approximate likelihood-ratio test for branches: A fast, accurate, and powerful alternative.Systematic biology, 55 4
H. Malínská, J. Tate, E. Mavrodiev, R. Matyášek, K. Lim, A. Leitch, D. Soltis, P. Soltis, A. Kovařík (2011)
Ribosomal RNA genes evolution in Tragopogon: A story of New and Old World allotetraploids and the synthetic linesTaxon, 60
K. Katoh, H. Toh (2008)
Recent developments in the MAFFT multiple sequence alignment programBriefings in bioinformatics, 9 4
S. Chan, B. Stoddard, Shuang-yong Xu (2010)
Natural and engineered nicking endonucleases—from cleavage mechanism to engineering of strand-specificityNucleic Acids Research, 39
Roberfroid Roberfroid (2007)
Inulin‐type fructans: functional foodJournal of Nutrition, 137
N. Kane, Q. Cronk (2008)
Botany without borders: barcoding in focusMolecular Ecology, 17
L. Gentzbittel, A. Perrault, P. Nicolas (1992)
Molecular Phylogeny of the Helianthus Genus, Based on Nuclear Restriction-Fragment-Length Polymorphism (RFLP)Molecular Biology and Evolution, 9
Anisimova Anisimova (1982)
Nature of the genomes in polyploid sunflower speciesByulleten' Vsesoyuznogo Ordena Lenina i Ordena Druzhby Narodov Instituta Rastenievodstva Imeni N.I. Vavilov, 118
J. Chandler (1991)
Chromosome evolution in sunflower.Developments in Plant Genetics and Breeding, 2
E. Pahlich, Chr. Gerlitz (1980)
A rapid DNA isolation procedure for small quantities of fresh leaf tissuePhytochemistry, 19
S. Straub, Matthew Parks, Kevin Weitemier, M. Fishbein, R. Cronn, A. Liston (2012)
Navigating the tip of the genomic iceberg: Next-generation sequencing for plant systematics.American journal of botany, 99 2
R. Timme, B. Simpson, C. Linder (2007)
High-resolution phylogeny for Helianthus (Asteraceae) using the 18S-26S ribosomal DNA external transcribed spacer.American journal of botany, 94 11
L. Rieseberg, D. Soltis (1991)
Phylogenetic consequences of cytoplasmic gene flow in plants., 5
D. Kostoff (1939)
Autosyndesis and structural hybridity in F1-hybrid Helianthus tuberosus L. x Helianthus annuus L. and their sequencesGenetica, 21
C. Rogers, T. Thompson, G. Seiler (1983)
Sunflower species of the United StatesBrittonia, 35
H. Malínská, J. Tate, R. Matyášek, A. Leitch, D. Soltis, P. Soltis, A. Kovařík (2010)
Similar patterns of rDNA evolution in synthetic and recently formed natural populations of Tragopogon (Asteraceae) allotetraploidsBMC Evolutionary Biology, 10
N. Kosaric, G. Cosentino, A. Wieczorek, Z. Duvnjak (1984)
The Jerusalem artichoke as an agricultural cropBiomass, 5
Kostoff Kostoff (1934)
A contribution to the meiosis of Helianthus tuberosus LZeitschr fűr Pflanzenzüchtung, 19
A. Guggisberg, F. Bretagnolle, G. Mansion (2006)
Allopolyploid Origin of the Mediterranean Endemic, Centaurium bianoris (Gentianaceae), Inferred by Molecular Markers, 31
E. Schilling, C. Linder, R. Noyes, L. Rieseberg (1998)
Phylogenetic relationships in Helianthus (Asteraceae) based on nuclear ribosomal DNA internal transcribed spacer region sequence dataSystematic Botany, 23
N. Kane, S. Sveinsson, H. Dempewolf, J. Yang, Dapeng Zhang, J. Engels, Q. Cronk (2012)
Ultra-barcoding in cacao (Theobroma spp.; Malvaceae) using whole chloroplast genomes and nuclear ribosomal DNA.American journal of botany, 99 2
J. Doležel, J. Greilhuber, J. Suda (2007)
Estimation of nuclear DNA content in plants using flow cytometryNature Protocols, 2
R. Long (1955)
Hybridization Between the Perennial Sunflowers Helianthus salicifolius A. Dietr. and H. grosseserratus MartensAmerican Midland Naturalist, 54
A. Schwarzbach, L. Rieseberg (2002)
Likely multiple origins of a diploid hybrid sunflower speciesMolecular Ecology, 11
T. Slotte, A. Ceplitis, B. Neuffer, H. Hurka, M. Lascoux (2006)
Intrageneric phylogeny of Capsella (Brassicaceae) and the origin of the tetraploid C. bursa-pastoris based on chloroplast and nuclear DNA sequences.American journal of botany, 93 11
K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei, Sudhir Kumar (2011)
MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods.Molecular biology and evolution, 28 10
P. Bajpai, P. Bajpai (1991)
Cultivation and utilization of Jerusalem artichoke for ethanol, single cell protein, and high-fructose syrup productionEnzyme and Microbial Technology, 13
M. Grabherr, B. Haas, M. Yassour, J. Levin, Dawn Thompson, I. Amit, X. Adiconis, Lin Fan, R. Raychowdhury, Qiandong Zeng, Zehua Chen, E. Mauceli, N. Hacohen, A. Gnirke, N. Rhind, F. Palma, B. Birren, C. Nusbaum, K. Lindblad-Toh, N. Friedman, A. Regev (2011)
Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq dataNature biotechnology, 29
Grabherr Grabherr, Haas Haas, Yassour Yassour, Levin Levin, Thompson Thompson, Amit Amit, Adiconis Adiconis, Fan Fan, Raychowdhury Raychowdhury, Zeng Zeng (2011)
Full‐length transcriptome assembly from RNA‐Seq data without a reference genomeNature Biotechnology, 29
Stéphane Guindon, O. Gascuel (2003)
A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood.Systematic biology, 52 5
Summary The perennial sunflower Helianthus tuberosus, known as Jerusalem Artichoke or Sunchoke, was cultivated in eastern North America before European contact. As such, it represents one of the few taxa that can support an independent origin of domestication in this region. Its tubers were adopted as a source of food and forage when the species was transferred to the Old World in the early 1600s, and are still used today. Despite the cultural and economic importance of this tuber crop species, its origin is debated. Competing hypotheses implicate the occurrence of polyploidization with or without hybridization, and list the annual sunflower H. annuus and five distantly related perennial sunflower species as potential parents. Here, we test these scenarios by skimming the genomes of diverse populations of Jerusalem Artichoke and its putative progenitors. We identify relationships among Helianthus taxa using complete plastomes (151 551 bp), partial mitochondrial genomes (196 853 bp) and 35S (8196 bp) and 5S (514 bp) ribosomal DNA. Our results refute the possibility that Jerusalem Artichoke is of H. annuus ancestry. We provide the first genetic evidence that this species originated recursively from perennial sunflowers of central‐eastern North America via hybridization between tetraploid Hairy Sunflower and diploid Sawtooth Sunflower.
New Phytologist – Wiley
Published: Feb 1, 2014
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.