Genetics of Epilepsy: An Overview

Genetics of Epilepsy: An Overview Studies of the genetics of epilepsy have, until recently, involved epidemiologic or segregation analyses of phenotypic characteristics of a number of seizure disorders. Technical advances in molecular biology involving gene mapping and gene identification have made it possible to examine the heritability of various epilepsy syndromes. Using “reverse genetics” or positional cloning, it is possible to identify an abnormal protein through gene isolation and cloning. Genes are localized through analysis of linkage to phenotypic markers (proteins) or DNA markers such as restriction fragment length polymorphisms, variable number of tandem repeats, and dinucleotides. Methods used to obtain DNA of interest involve digestion of genomic DNA with specific restriction endonucleases or amplification of DNA by polymerase chain reaction technology. Gel electrophoresis is the basis for the separation of different sized DNA. Inherited disorders for which a gene has been cloned or localized have highly penetrant, well‐defined clinical phenotypes with no remissions and abundant clinical material. Genetic epilepsies, however, are variably penetrant age‐dependent disorders with heterogenous clinical phenotypes. Despite these difficulties, three genetic epilepsies have been mapped to specific chromosomes: benign familial neonatal convulsions to 20q, juvenile myoclonic epilepsy to 6p, and Baltic progressive myoclonus epilepsy to 21q. Further progress in understanding genetic epilepsies will depend on better definition of syndrome phenotypes, isolation of the epilepsy gene(s), and identification of the abnormal protein(s). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Epilepsia Wiley

Genetics of Epilepsy: An Overview

Epilepsia, Volume 34 – Aug 1, 1993

Loading next page...
 
/lp/wiley/genetics-of-epilepsy-an-overview-Ge3kWgJHzs
Publisher
Wiley
Copyright
1993 International League Against Epilepsy
ISSN
0013-9580
eISSN
1528-1167
D.O.I.
10.1111/j.1528-1167.1993.tb06254.x
Publisher site
See Article on Publisher Site

Abstract

Studies of the genetics of epilepsy have, until recently, involved epidemiologic or segregation analyses of phenotypic characteristics of a number of seizure disorders. Technical advances in molecular biology involving gene mapping and gene identification have made it possible to examine the heritability of various epilepsy syndromes. Using “reverse genetics” or positional cloning, it is possible to identify an abnormal protein through gene isolation and cloning. Genes are localized through analysis of linkage to phenotypic markers (proteins) or DNA markers such as restriction fragment length polymorphisms, variable number of tandem repeats, and dinucleotides. Methods used to obtain DNA of interest involve digestion of genomic DNA with specific restriction endonucleases or amplification of DNA by polymerase chain reaction technology. Gel electrophoresis is the basis for the separation of different sized DNA. Inherited disorders for which a gene has been cloned or localized have highly penetrant, well‐defined clinical phenotypes with no remissions and abundant clinical material. Genetic epilepsies, however, are variably penetrant age‐dependent disorders with heterogenous clinical phenotypes. Despite these difficulties, three genetic epilepsies have been mapped to specific chromosomes: benign familial neonatal convulsions to 20q, juvenile myoclonic epilepsy to 6p, and Baltic progressive myoclonus epilepsy to 21q. Further progress in understanding genetic epilepsies will depend on better definition of syndrome phenotypes, isolation of the epilepsy gene(s), and identification of the abnormal protein(s).

Journal

EpilepsiaWiley

Published: Aug 1, 1993

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off