Generalized models vs. classification tree analysis: Predicting spatial distributions of plant species at different scales

Generalized models vs. classification tree analysis: Predicting spatial distributions of plant... Abstract. Statistical models of the realized niche of species are increasingly used, but systematic comparisons of alternative methods are still limited. In particular, only few studies have explored the effect of scale in model outputs. In this paper, we investigate the predictive ability of three statistical methods (generalized linear models, generalized additive models and classification tree analysis) using species distribution data at three scales: fine (Catalonia), intermediate (Portugal) and coarse (Europe). Four Mediterranean tree species were modelled for comparison. Variables selected by models were relatively consistent across scales and the predictive accuracy of models varied only slightly. However, there were slight differences in the performance of methods. Classification tree analysis had a lower accuracy than the generalized methods, especially at finer scales. The performance of generalized linear models also increased with scale. At the fine scale GLM with linear terms showed better accuracy than GLM with quadratic and polynomial terms. This is probably because distributions at finer scales represent a linear sub‐sample of entire realized niches of species. In contrast to GLM, the performance of GAM was constant across scales being more data‐oriented. The predictive accuracy of GAM was always at least equal to other techniques, suggesting that this modelling approach is more robust to variations of scale because it can deal with any response shape. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Vegetation Science Wiley

Generalized models vs. classification tree analysis: Predicting spatial distributions of plant species at different scales

Loading next page...
 
/lp/wiley/generalized-models-vs-classification-tree-analysis-predicting-spatial-FzMM0OyUNi
Publisher
Wiley
Copyright
2003 IAVS ‐ the International Association of Vegetation Science
ISSN
1100-9233
eISSN
1654-1103
DOI
10.1111/j.1654-1103.2003.tb02199.x
Publisher site
See Article on Publisher Site

Abstract

Abstract. Statistical models of the realized niche of species are increasingly used, but systematic comparisons of alternative methods are still limited. In particular, only few studies have explored the effect of scale in model outputs. In this paper, we investigate the predictive ability of three statistical methods (generalized linear models, generalized additive models and classification tree analysis) using species distribution data at three scales: fine (Catalonia), intermediate (Portugal) and coarse (Europe). Four Mediterranean tree species were modelled for comparison. Variables selected by models were relatively consistent across scales and the predictive accuracy of models varied only slightly. However, there were slight differences in the performance of methods. Classification tree analysis had a lower accuracy than the generalized methods, especially at finer scales. The performance of generalized linear models also increased with scale. At the fine scale GLM with linear terms showed better accuracy than GLM with quadratic and polynomial terms. This is probably because distributions at finer scales represent a linear sub‐sample of entire realized niches of species. In contrast to GLM, the performance of GAM was constant across scales being more data‐oriented. The predictive accuracy of GAM was always at least equal to other techniques, suggesting that this modelling approach is more robust to variations of scale because it can deal with any response shape.

Journal

Journal of Vegetation ScienceWiley

Published: Oct 1, 2003

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off