Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Fucoidan‐induced osteogenic differentiation promotes angiogenesis by inducing vascular endothelial growth factor secretion and accelerates bone repair

Fucoidan‐induced osteogenic differentiation promotes angiogenesis by inducing vascular... Osteogenesis and angiogenesis, including cell–cell communication between blood vessel cells and bone cells, are essential for bone repair. Fucoidan is a chemical compound that has a variety of biological activities. It stimulates osteoblast differentiation in human mesenchymal stem cells (MSCs), which in turn induces angiogenesis. However, the mechanism by which this communication between osteoblasts and endothelial cells is mediated remains unclear. Thus, the aim of this study was to clarify the relationship between fucoidan‐induced osteoblastic differentiation in MSCs and angiogenesis in endothelial cells. First, the effect was confirmed of fucoidan on osteoblast differentiation in MSCs and obtained conditioned media from these cells (Fucoidan‐MSC‐CM). Next, the angiogenic activity of Fucoidan‐MSC‐CM was investigated and it was found that it stimulated angiogenesis, demonstrated by proliferation, tube formation, migration and sprout capillary formation in human umbilical vein endothelial cells. Messenger ribonucleic acid expression and protein secretion of vascular endothelial growth factor (VEGF) were dramatically increased during fucoidan‐induced osteoblast differentiation and that its angiogenic activities were reduced by a VEGF/VEGF receptor‐specific binding inhibitor. Furthermore, Fucoidan‐MSC‐CM increased the phosphorylation of mitogen‐activated protein kinase and PI3K/AKT/eNOS signalling pathway, and that its angiogenic effects were markedly suppressed by SB203580 and AKT 1/2 inhibitor. Finally, an in vivo study was conducted and it was found that fucoidan accelerated new blood vessel formation and partially promoted bone formation in a rabbit model of a calvarial bone defect. This is the first study to investigate the angiogenic effect of fucoidan‐induced osteoblastic differentiation through VEGF secretion, suggesting the therapeutic potential of fucoidan for enhancing bone repair. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Tissue Engineering and Regenerative Medicine Wiley

Fucoidan‐induced osteogenic differentiation promotes angiogenesis by inducing vascular endothelial growth factor secretion and accelerates bone repair

Loading next page...
 
/lp/wiley/fucoidan-induced-osteogenic-differentiation-promotes-angiogenesis-by-nNnCQaM1ge

References (57)

Publisher
Wiley
Copyright
Copyright © 2018 John Wiley & Sons, Ltd.
ISSN
1932-6254
eISSN
1932-7005
DOI
10.1002/term.2509
Publisher site
See Article on Publisher Site

Abstract

Osteogenesis and angiogenesis, including cell–cell communication between blood vessel cells and bone cells, are essential for bone repair. Fucoidan is a chemical compound that has a variety of biological activities. It stimulates osteoblast differentiation in human mesenchymal stem cells (MSCs), which in turn induces angiogenesis. However, the mechanism by which this communication between osteoblasts and endothelial cells is mediated remains unclear. Thus, the aim of this study was to clarify the relationship between fucoidan‐induced osteoblastic differentiation in MSCs and angiogenesis in endothelial cells. First, the effect was confirmed of fucoidan on osteoblast differentiation in MSCs and obtained conditioned media from these cells (Fucoidan‐MSC‐CM). Next, the angiogenic activity of Fucoidan‐MSC‐CM was investigated and it was found that it stimulated angiogenesis, demonstrated by proliferation, tube formation, migration and sprout capillary formation in human umbilical vein endothelial cells. Messenger ribonucleic acid expression and protein secretion of vascular endothelial growth factor (VEGF) were dramatically increased during fucoidan‐induced osteoblast differentiation and that its angiogenic activities were reduced by a VEGF/VEGF receptor‐specific binding inhibitor. Furthermore, Fucoidan‐MSC‐CM increased the phosphorylation of mitogen‐activated protein kinase and PI3K/AKT/eNOS signalling pathway, and that its angiogenic effects were markedly suppressed by SB203580 and AKT 1/2 inhibitor. Finally, an in vivo study was conducted and it was found that fucoidan accelerated new blood vessel formation and partially promoted bone formation in a rabbit model of a calvarial bone defect. This is the first study to investigate the angiogenic effect of fucoidan‐induced osteoblastic differentiation through VEGF secretion, suggesting the therapeutic potential of fucoidan for enhancing bone repair.

Journal

Journal of Tissue Engineering and Regenerative MedicineWiley

Published: Jan 1, 2018

Keywords: ; ; ; ; ;

There are no references for this article.