Access the full text.
Sign up today, get DeepDyve free for 14 days.
Many Western art music composers have taken advantage of tabulated data for nourishing their creative practices, particularly since the early twentieth century. The arrival of atonality and serial techniques was crucial to this shift. Among the authors dealing with these kinds of tables, some have considered the singular mathematical properties of magic squares. This paper focuses on a particular case study in this sense: Philippe Manoury's Third String Quartet, entitled Melencolia. We mainly analyse mainly several strategies conceived by the French composer – through his own sketches – in order to manipulate pitches and pitch‐classes over time. For that purpose, we take advantage of Klumpenhouwer networks as a way to settle wide and dense isographic relationships. Our hyper‐K‐nets sometimes reach a total of 32 arrows that allow geometrical arrangements as tesseracts in which their different dimensions cluster related families of isographies. In doing so, we aim to provide an instructive example of how to contextualise K‐nets and isographies as powerful tools for the analysis of compositional practices.
Music Analysis – Wiley
Published: Mar 1, 2022
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.