Formation of PdNiZn thin film at oil‐water interface: XPS study and application as Suzuki‐Miyaura catalyst

Formation of PdNiZn thin film at oil‐water interface: XPS study and application as... Nanosheet of PdNiZn and nanosphere of PdNiZn/reduced‐graphene oxide (RGO) with sub‐3 nm spheres have been successfully synthesized through a facile oil‐water interfacial strategy. The morphology and composition of the films were determined by X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive analysis of X‐ray (EDAX) and elemental mapping. In the present study, we have developed a method to minimize the usage of precious Pd element. Due to the special structure and intermetallic synergies, the PdNiZn and PdNiZn/RGO nanoalloys exhibited enhanced catalytic activity and durability relative to Pd nanoparticles in Suzuki‐Miyaura C‐C cross‐coupling reaction. Compared to classical cross‐coupling reactions, this method has the advantages of a green solvent, short reaction times, low catalyst loading, high yields and reusability of the catalysts. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Organometallic Chemistry Wiley

Formation of PdNiZn thin film at oil‐water interface: XPS study and application as Suzuki‐Miyaura catalyst

Loading next page...
 
/lp/wiley/formation-of-pdnizn-thin-film-at-oil-water-interface-xps-study-and-CTfRwKbl0l
Publisher
Wiley
Copyright
Copyright © 2018 John Wiley & Sons, Ltd.
ISSN
0268-2605
eISSN
1099-0739
D.O.I.
10.1002/aoc.4187
Publisher site
See Article on Publisher Site

Abstract

Nanosheet of PdNiZn and nanosphere of PdNiZn/reduced‐graphene oxide (RGO) with sub‐3 nm spheres have been successfully synthesized through a facile oil‐water interfacial strategy. The morphology and composition of the films were determined by X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive analysis of X‐ray (EDAX) and elemental mapping. In the present study, we have developed a method to minimize the usage of precious Pd element. Due to the special structure and intermetallic synergies, the PdNiZn and PdNiZn/RGO nanoalloys exhibited enhanced catalytic activity and durability relative to Pd nanoparticles in Suzuki‐Miyaura C‐C cross‐coupling reaction. Compared to classical cross‐coupling reactions, this method has the advantages of a green solvent, short reaction times, low catalyst loading, high yields and reusability of the catalysts.

Journal

Applied Organometallic ChemistryWiley

Published: Jan 1, 2018

Keywords: ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off