Forecasting the volatility of a combined multi‐country stock index using GWMA algorithms

Forecasting the volatility of a combined multi‐country stock index using GWMA algorithms Globalization has increased the volatility of international financial transactions, particularly those related to international stock markets. An increase in the volatility of one country's stock market spreads throughout the globe, affecting other countries' stock markets. In particular, the Dow Jones Industrial Average plays an extremely important role in the international stock market. This paper uses the generally weighted moving average method and data from the Dow Jones Industrial Average, the National Association of Securities Dealers Automated Quotations, Japan's Nikkei 225, the Korea Composite Stock Price Index, and the Hong Kong Hang Seng Index to predict the performance of the Taiwan Capitalization Weighted Stock Index. This paper attempts to find the smallest prediction error using the optimal combination of generally weighted moving average model parameters and combinations of various international stock market data and compares the results to that found using the exponentially weighted moving average model to explore differences between the two types of forecasting models. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Expert Systems Wiley

Forecasting the volatility of a combined multi‐country stock index using GWMA algorithms

Loading next page...
 
/lp/wiley/forecasting-the-volatility-of-a-combined-multi-country-stock-index-MYfreiGZ5O
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
© 2018 John Wiley & Sons Ltd
ISSN
0266-4720
eISSN
1468-0394
D.O.I.
10.1111/exsy.12248
Publisher site
See Article on Publisher Site

Abstract

Globalization has increased the volatility of international financial transactions, particularly those related to international stock markets. An increase in the volatility of one country's stock market spreads throughout the globe, affecting other countries' stock markets. In particular, the Dow Jones Industrial Average plays an extremely important role in the international stock market. This paper uses the generally weighted moving average method and data from the Dow Jones Industrial Average, the National Association of Securities Dealers Automated Quotations, Japan's Nikkei 225, the Korea Composite Stock Price Index, and the Hong Kong Hang Seng Index to predict the performance of the Taiwan Capitalization Weighted Stock Index. This paper attempts to find the smallest prediction error using the optimal combination of generally weighted moving average model parameters and combinations of various international stock market data and compares the results to that found using the exponentially weighted moving average model to explore differences between the two types of forecasting models.

Journal

Expert SystemsWiley

Published: Jan 1, 2018

Keywords: ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off