Flow alteration and thermal pollution depress modelled growth rates of an iconic riverine fish, the Murray cod Maccullochella peelii

Flow alteration and thermal pollution depress modelled growth rates of an iconic riverine fish,... The serial discontinuity concept (SDC) proposes that hypolimnetic‐releasing impoundments cause major disruptions to the naturally occurring physical, chemical and biological gradients of rivers but that this impact diminishes with distance downstream. Such a gradient in discharge, flow velocity and temperature regime occurs below a large hypolimnetic‐releasing impoundment, the Hume Dam, on the River Murray in south‐eastern Australia. To examine the effects of this disturbance gradient on a warm‐water large‐bodied freshwater fish, the Murray cod (Maccullochella peelii), a bioenergetics model was developed and calibrated to explore energy expended under differing water velocities and temperature regimes. Model simulations predicted negative growth of juveniles directly downstream of the impoundment, due largely to the energetic costs associated with active and, to a lesser extent, standard metabolism outweighing the achievable energetic gains through food consumption. As flow velocity and temperature regimes became more favourable downstream, so did the simulated growth of the species. It was not until +239 km downstream of the impoundment that the model predicted that flow velocity and temperature regimes were suitable for greater weight gains. The modelled growth responses of juvenile Murray cod are consistent with the predictions of the SDC, emphasising that changes in the bioenergetics of individuals are likely to be reflected in reduced growth rates under the changed flow velocity and temperature regimes imposed by disturbance gradients. This research represents a valuable step in the biological understanding of Murray cod within variable riverine environments and emphasises the urgency required to mitigate impacts associated with hypolimnetic impoundments. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ecology of Freshwater Fish Wiley

Flow alteration and thermal pollution depress modelled growth rates of an iconic riverine fish, the Murray cod Maccullochella peelii

Loading next page...
 
/lp/wiley/flow-alteration-and-thermal-pollution-depress-modelled-growth-rates-of-7KAOewnFx9
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
Copyright © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd
ISSN
0906-6691
eISSN
1600-0633
D.O.I.
10.1111/eff.12384
Publisher site
See Article on Publisher Site

Abstract

The serial discontinuity concept (SDC) proposes that hypolimnetic‐releasing impoundments cause major disruptions to the naturally occurring physical, chemical and biological gradients of rivers but that this impact diminishes with distance downstream. Such a gradient in discharge, flow velocity and temperature regime occurs below a large hypolimnetic‐releasing impoundment, the Hume Dam, on the River Murray in south‐eastern Australia. To examine the effects of this disturbance gradient on a warm‐water large‐bodied freshwater fish, the Murray cod (Maccullochella peelii), a bioenergetics model was developed and calibrated to explore energy expended under differing water velocities and temperature regimes. Model simulations predicted negative growth of juveniles directly downstream of the impoundment, due largely to the energetic costs associated with active and, to a lesser extent, standard metabolism outweighing the achievable energetic gains through food consumption. As flow velocity and temperature regimes became more favourable downstream, so did the simulated growth of the species. It was not until +239 km downstream of the impoundment that the model predicted that flow velocity and temperature regimes were suitable for greater weight gains. The modelled growth responses of juvenile Murray cod are consistent with the predictions of the SDC, emphasising that changes in the bioenergetics of individuals are likely to be reflected in reduced growth rates under the changed flow velocity and temperature regimes imposed by disturbance gradients. This research represents a valuable step in the biological understanding of Murray cod within variable riverine environments and emphasises the urgency required to mitigate impacts associated with hypolimnetic impoundments.

Journal

Ecology of Freshwater FishWiley

Published: Jan 1, 2018

Keywords: ; ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off