Finite element modeling of laser beam welding for residual stress calculation

Finite element modeling of laser beam welding for residual stress calculation Numerous welding processes are used in naval, automotive and aircraft industries for joining structural components. Laser beam welding represents a key technology due to his low heat input and the high degree of process automation. Nonetheless, all welded materials are characterised by a strong change of microstructure in the heat effected and fusion zone. For simulation of residual stress fields the finite element method is the most often simulation tool. Reliable simulations have to take into account the changes in microstructure. Within this work, a viscoplastic material model for welding is presented, accounting for the solid and fluid phase, which is extended later on by a simple kinetic model to model precipitation hardening. (© 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim) http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Proceedings in Applied Mathematics & Mechanics Wiley

Finite element modeling of laser beam welding for residual stress calculation

Loading next page...
 
/lp/wiley/finite-element-modeling-of-laser-beam-welding-for-residual-stress-32TYmP5MFJ
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
Copyright © 2017 Wiley Subscription Services
ISSN
1617-7061
eISSN
1617-7061
D.O.I.
10.1002/pamm.201710177
Publisher site
See Article on Publisher Site

Abstract

Numerous welding processes are used in naval, automotive and aircraft industries for joining structural components. Laser beam welding represents a key technology due to his low heat input and the high degree of process automation. Nonetheless, all welded materials are characterised by a strong change of microstructure in the heat effected and fusion zone. For simulation of residual stress fields the finite element method is the most often simulation tool. Reliable simulations have to take into account the changes in microstructure. Within this work, a viscoplastic material model for welding is presented, accounting for the solid and fluid phase, which is extended later on by a simple kinetic model to model precipitation hardening. (© 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Journal

Proceedings in Applied Mathematics & MechanicsWiley

Published: Jan 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial