Finding Diachronic Like‐Minded Users

Finding Diachronic Like‐Minded Users User communities in social networks are usually identified by considering explicit structural social connections between users. While such communities can reveal important information about their members such as family or friendship ties and geographical proximity, just to name a few, they do not necessarily succeed at pulling like‐minded users that share the same interests together. Therefore, researchers have explored the topical similarity of social content to build like‐minded communities of users. In this article, following the topic‐based approaches, we are interested in identifying communities of users that share similar topical interests with similar temporal behavior. More specifically, we tackle the problem of identifying temporal (diachronic) topic‐based communities, i.e., communities of users who have a similar temporal inclination toward emerging topics. To do so, we utilize multivariate time series analysis to model the contributions of each user toward emerging topics. Further, our modeling is completely agnostic to the underlying topic detection method. We extract topics of interest by employing seminal topic detection methods; one graph‐based and two latent Dirichlet allocation‐based methods. Through our experiments on Twitter data, we demonstrate the effectiveness of our proposed temporal topic‐based community detection method in the context of news recommendation, user prediction, and document timestamp prediction applications, compared with the nontemporal as well as the state‐of‐the‐art temporal approaches. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Computational Intelligence Wiley

Loading next page...
 
/lp/wiley/finding-diachronic-like-minded-users-CTjbsIK9O0
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
© 2018 Wiley Periodicals, Inc.
ISSN
0824-7935
eISSN
1467-8640
D.O.I.
10.1111/coin.12117
Publisher site
See Article on Publisher Site

Abstract

User communities in social networks are usually identified by considering explicit structural social connections between users. While such communities can reveal important information about their members such as family or friendship ties and geographical proximity, just to name a few, they do not necessarily succeed at pulling like‐minded users that share the same interests together. Therefore, researchers have explored the topical similarity of social content to build like‐minded communities of users. In this article, following the topic‐based approaches, we are interested in identifying communities of users that share similar topical interests with similar temporal behavior. More specifically, we tackle the problem of identifying temporal (diachronic) topic‐based communities, i.e., communities of users who have a similar temporal inclination toward emerging topics. To do so, we utilize multivariate time series analysis to model the contributions of each user toward emerging topics. Further, our modeling is completely agnostic to the underlying topic detection method. We extract topics of interest by employing seminal topic detection methods; one graph‐based and two latent Dirichlet allocation‐based methods. Through our experiments on Twitter data, we demonstrate the effectiveness of our proposed temporal topic‐based community detection method in the context of news recommendation, user prediction, and document timestamp prediction applications, compared with the nontemporal as well as the state‐of‐the‐art temporal approaches.

Journal

Computational IntelligenceWiley

Published: Jan 1, 2018

Keywords: ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off