Field Experiments on Erosion by Overland Flow and Their Implication for a Digital Terrain Model of Channel Initiation

Field Experiments on Erosion by Overland Flow and Their Implication for a Digital Terrain Model... Dietrich et al. (1992, 1993) proposed a digital terrain model for predicting the location of channel heads on the basis of the assumption that they occur where saturation overland flow exerts a boundary shear stress in excess of a critical value. Flume experiments were conducted in the modeled field site to evaluate the threshold hypothesis and to constrain critical shear stress and flow resistance parameters. Under complete grass cover, microtopography and grass stems were found to prevent significant sediment transport at all but the highest flows. When the grass stems were cut close to the ground, flow resistance and critical shear stress for significant sediment transport were reduced by up to an order of magnitude, but the remaining dense root mat prevented deep scour. These field experiments support the threshold assumption and the model estimations of the critical shear stress if local topographic convergence of flow is taken into account. The experiments also support the interpretation that significant degradation of vegetation cover is required for channel incision. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Water Resources Research Wiley

Field Experiments on Erosion by Overland Flow and Their Implication for a Digital Terrain Model of Channel Initiation

Loading next page...
 
/lp/wiley/field-experiments-on-erosion-by-overland-flow-and-their-implication-AHqmuEVV78
Publisher
Wiley
Copyright
Copyright © 1995 by the American Geophysical Union.
ISSN
0043-1397
eISSN
1944-7973
D.O.I.
10.1029/95WR02218
Publisher site
See Article on Publisher Site

Abstract

Dietrich et al. (1992, 1993) proposed a digital terrain model for predicting the location of channel heads on the basis of the assumption that they occur where saturation overland flow exerts a boundary shear stress in excess of a critical value. Flume experiments were conducted in the modeled field site to evaluate the threshold hypothesis and to constrain critical shear stress and flow resistance parameters. Under complete grass cover, microtopography and grass stems were found to prevent significant sediment transport at all but the highest flows. When the grass stems were cut close to the ground, flow resistance and critical shear stress for significant sediment transport were reduced by up to an order of magnitude, but the remaining dense root mat prevented deep scour. These field experiments support the threshold assumption and the model estimations of the critical shear stress if local topographic convergence of flow is taken into account. The experiments also support the interpretation that significant degradation of vegetation cover is required for channel incision.

Journal

Water Resources ResearchWiley

Published: Nov 1, 1995

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off