Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Fast Proton Insertion in Layered H2W2O7 via Selective Etching of an Aurivillius Phase

Fast Proton Insertion in Layered H2W2O7 via Selective Etching of an Aurivillius Phase H2W2O7, a metastable material synthesized via selective etching of the Aurivillius‐related Bi2W2O9, is demonstrated as an electrode for high power proton‐based energy storage. Comprehensive structural characterization is performed to obtain a high‐fidelity crystal structure of H2W2O7 using an iterative approach that combines X‐ray diffraction, neutron pair distribution function, scanning transmission electron microscopy, Raman spectroscopy, and density functional theory modeling. Electrochemical characterization shows a capacity retention of ≈80% at 1000 mV s–1 (1.5‐s charge/discharge time) as compared to 1 mV s–1 (≈16‐min charge/discharge time) with cyclability for over 100 000 cycles. Energetics from density functional theory calculations indicate that proton storage occurs at the terminal oxygen sites within the hydrated interlayer. Last, optical micrographs collected during in situ Raman spectroscopy show reversible, multicolor electrochromism, with color changes from pale yellow to blue, purple, and last, orange as a function of proton content. These results highlight the use of selective etching of layered perovskites for the synthesis of metastable transition metal oxide materials and the use of H2W2O7 as an anode material for proton‐based energy storage or electrochromic applications. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advanced Energy Materials Wiley

Fast Proton Insertion in Layered H2W2O7 via Selective Etching of an Aurivillius Phase

Loading next page...
 
/lp/wiley/fast-proton-insertion-in-layered-h2w2o7-via-selective-etching-of-an-gEkwvzSqD0
Publisher
Wiley
Copyright
© 2021 Wiley‐VCH GmbH
ISSN
1614-6832
eISSN
1614-6840
DOI
10.1002/aenm.202003335
Publisher site
See Article on Publisher Site

Abstract

H2W2O7, a metastable material synthesized via selective etching of the Aurivillius‐related Bi2W2O9, is demonstrated as an electrode for high power proton‐based energy storage. Comprehensive structural characterization is performed to obtain a high‐fidelity crystal structure of H2W2O7 using an iterative approach that combines X‐ray diffraction, neutron pair distribution function, scanning transmission electron microscopy, Raman spectroscopy, and density functional theory modeling. Electrochemical characterization shows a capacity retention of ≈80% at 1000 mV s–1 (1.5‐s charge/discharge time) as compared to 1 mV s–1 (≈16‐min charge/discharge time) with cyclability for over 100 000 cycles. Energetics from density functional theory calculations indicate that proton storage occurs at the terminal oxygen sites within the hydrated interlayer. Last, optical micrographs collected during in situ Raman spectroscopy show reversible, multicolor electrochromism, with color changes from pale yellow to blue, purple, and last, orange as a function of proton content. These results highlight the use of selective etching of layered perovskites for the synthesis of metastable transition metal oxide materials and the use of H2W2O7 as an anode material for proton‐based energy storage or electrochromic applications.

Journal

Advanced Energy MaterialsWiley

Published: Jan 1, 2021

Keywords: ; ; ; ;

References