Facile Nondestructive Assembly of Tyrosine‐Rich Peptide Nanofibers as a Biological Glue for Multicomponent‐Based Nanoelectrode Applications

Facile Nondestructive Assembly of Tyrosine‐Rich Peptide Nanofibers as a Biological Glue for... Achieving the nondestructive assembly of carbon nanoelectrodes with multiple components in a scalable manner enables effective electrical interfaces among nanomaterials. Here, a facile nondestructive multiscale assembly of multicomponent nanomaterials using self‐assembled tyrosine‐rich peptide nanofibers (TPFs) as a biological glue is reported. The versatile functionalities of the rationally devised tyrosine‐rich short peptide allow for (1) self‐assembly of the peptide into nanofibers using noncovalent interactions, followed by (2) immobilization of spatially distributed metal nanoparticles on the nanofiber surface, and (3) subsequent assembly with graphitic nanomaterials into a percolated network‐structure. This percolated network‐structure of silver nanoparticle (AgNP)‐decorated peptide nanofibers with imbedded single‐walled carbon nanotubes (SWNTs) proves to be a versatile nanoelectrode platform with excellent processability. The SWNT–TPF–AgNP assembly, when utilized as a flexible and transparent multicomponent electronic film, was quite effective for enhancing direct electron transfer (DET) as verified for a third‐generation glucose sensor composed of this film. The simple solution process used to produce the functional nanomaterials could provide a new platform for scalable manufacturing of novel nanoelectrode materials forming effective electrical contacts with molecules from diverse biological systems. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advanced Functional Materials Wiley

Facile Nondestructive Assembly of Tyrosine‐Rich Peptide Nanofibers as a Biological Glue for Multicomponent‐Based Nanoelectrode Applications

Loading next page...
 
/lp/wiley/facile-nondestructive-assembly-of-tyrosine-rich-peptide-nanofibers-as-0FxFh2s5Qh
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
© 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
ISSN
1616-301X
eISSN
1616-3028
D.O.I.
10.1002/adfm.201705729
Publisher site
See Article on Publisher Site

Abstract

Achieving the nondestructive assembly of carbon nanoelectrodes with multiple components in a scalable manner enables effective electrical interfaces among nanomaterials. Here, a facile nondestructive multiscale assembly of multicomponent nanomaterials using self‐assembled tyrosine‐rich peptide nanofibers (TPFs) as a biological glue is reported. The versatile functionalities of the rationally devised tyrosine‐rich short peptide allow for (1) self‐assembly of the peptide into nanofibers using noncovalent interactions, followed by (2) immobilization of spatially distributed metal nanoparticles on the nanofiber surface, and (3) subsequent assembly with graphitic nanomaterials into a percolated network‐structure. This percolated network‐structure of silver nanoparticle (AgNP)‐decorated peptide nanofibers with imbedded single‐walled carbon nanotubes (SWNTs) proves to be a versatile nanoelectrode platform with excellent processability. The SWNT–TPF–AgNP assembly, when utilized as a flexible and transparent multicomponent electronic film, was quite effective for enhancing direct electron transfer (DET) as verified for a third‐generation glucose sensor composed of this film. The simple solution process used to produce the functional nanomaterials could provide a new platform for scalable manufacturing of novel nanoelectrode materials forming effective electrical contacts with molecules from diverse biological systems.

Journal

Advanced Functional MaterialsWiley

Published: Jan 1, 2018

Keywords: ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off