Fabrication of sintered porous polymeric materials: effect of chain interdiffusion time on mechanical properties

Fabrication of sintered porous polymeric materials: effect of chain interdiffusion time on... In this study, sintered porous polymeric materials made of high density polyethylene (HDPE) were fabricated through controlling the chain interdiffusion time at the transition temperature of semicrystalline and melt states. At this intermediate state, where both crystalline and amorphous phases coexist, the interfacial welding of HDPE particles is facilitated thanks to interdiffusion caused by chain relaxation phenomena. Then, by assuming a spherical shape and a cubic packing configuration of particles, a geometrical model was developed to predict porosity variations as sintering progresses. Moreover, the HDPE used, as a broad molecular weight distributed polymer, has different family chains with different specific molecular weight ranges. Accordingly, the melt coalescence rate of the particles was tracked using an optical microscope equipped with a hot stage, in order to determine the diffusion characteristic times for each family. During the characterization stage, SEM images proved the presence of porous structures in the sintered samples. In addition, mechanical properties were assessed through the shear punch test. It was shown that the mechanical properties are governed by the interdiffusion of long chains which occurs at relatively long sintering times. The results also demonstrated the role of reptation motion of long chains in the interfacial welding of polymeric particles. They revealed the compatibility of macroscopic properties of the samples and chain motions at microscopic levels. © 2017 Society of Chemical Industry http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Polymer International Wiley

Fabrication of sintered porous polymeric materials: effect of chain interdiffusion time on mechanical properties

Loading next page...
 
/lp/wiley/fabrication-of-sintered-porous-polymeric-materials-effect-of-chain-jsuoZm00NE
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
© 2018 Society of Chemical Industry
ISSN
0959-8103
eISSN
1097-0126
D.O.I.
10.1002/pi.5524
Publisher site
See Article on Publisher Site

Abstract

In this study, sintered porous polymeric materials made of high density polyethylene (HDPE) were fabricated through controlling the chain interdiffusion time at the transition temperature of semicrystalline and melt states. At this intermediate state, where both crystalline and amorphous phases coexist, the interfacial welding of HDPE particles is facilitated thanks to interdiffusion caused by chain relaxation phenomena. Then, by assuming a spherical shape and a cubic packing configuration of particles, a geometrical model was developed to predict porosity variations as sintering progresses. Moreover, the HDPE used, as a broad molecular weight distributed polymer, has different family chains with different specific molecular weight ranges. Accordingly, the melt coalescence rate of the particles was tracked using an optical microscope equipped with a hot stage, in order to determine the diffusion characteristic times for each family. During the characterization stage, SEM images proved the presence of porous structures in the sintered samples. In addition, mechanical properties were assessed through the shear punch test. It was shown that the mechanical properties are governed by the interdiffusion of long chains which occurs at relatively long sintering times. The results also demonstrated the role of reptation motion of long chains in the interfacial welding of polymeric particles. They revealed the compatibility of macroscopic properties of the samples and chain motions at microscopic levels. © 2017 Society of Chemical Industry

Journal

Polymer InternationalWiley

Published: Jan 1, 2018

Keywords: ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial