Fabrication of Electrochemical Sensor Based on Layered Double Hydroxide/Polypyrrole/Carbon Paste for Determination of an Alpha‐adrenergic Blocking Agent Terazosin

Fabrication of Electrochemical Sensor Based on Layered Double Hydroxide/Polypyrrole/Carbon Paste... New insights into the design of highly sensitive, carbon‐based electrochemical sensors are presented in this work. This was achieved by exploring the interesting properties of conductive (Mg/Al) layered double hydroxide‐dodecyl sulphate/polypyrrole nanocomposites which were synthesized by in‐situ polymerization of pyrrole during the assembly of (Mg/Al) layered double hydroxide, and by employing the anionic surfactant dodecyl sulphate as a modifier. Changes in morphology and surface area of the nanocomposites occured as a result of change in pyrrole percentage. Under optimal conditions, the modified carbon paste electrode successfully achieved detection limits of 0.057 and 0.134 nmol L−1 of Terazosin hydrochloride in pharmaceutical formulation and spiked human serum fluid, respectively. Moreover, the sensors are highly stable, reusable and free of interference by other commonly present excipients in drug formulations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Electroanalysis Wiley

Fabrication of Electrochemical Sensor Based on Layered Double Hydroxide/Polypyrrole/Carbon Paste for Determination of an Alpha‐adrenergic Blocking Agent Terazosin

Loading next page...
 
/lp/wiley/fabrication-of-electrochemical-sensor-based-on-layered-double-wJPugCJpqe
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
© 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
ISSN
1040-0397
eISSN
1521-4109
D.O.I.
10.1002/elan.201700321
Publisher site
See Article on Publisher Site

Abstract

New insights into the design of highly sensitive, carbon‐based electrochemical sensors are presented in this work. This was achieved by exploring the interesting properties of conductive (Mg/Al) layered double hydroxide‐dodecyl sulphate/polypyrrole nanocomposites which were synthesized by in‐situ polymerization of pyrrole during the assembly of (Mg/Al) layered double hydroxide, and by employing the anionic surfactant dodecyl sulphate as a modifier. Changes in morphology and surface area of the nanocomposites occured as a result of change in pyrrole percentage. Under optimal conditions, the modified carbon paste electrode successfully achieved detection limits of 0.057 and 0.134 nmol L−1 of Terazosin hydrochloride in pharmaceutical formulation and spiked human serum fluid, respectively. Moreover, the sensors are highly stable, reusable and free of interference by other commonly present excipients in drug formulations.

Journal

ElectroanalysisWiley

Published: Jan 1, 2018

Keywords: ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off