Fabrication of 3D Microfluidic Channels and In‐Channel Features Using 3D Printed, Water‐Soluble Sacrificial Mold

Fabrication of 3D Microfluidic Channels and In‐Channel Features Using 3D Printed,... Recent advent of additive manufacturing potentiates the fabrication of microchannels, albeit with limitations in resolution of printed structures, freedom of geometry, and choice of printable materials. Herein, a method is developed by sacrificial molding to fabricate microchannels in various polymer matrices and geometries. This method allows for rapid fabrication of 3D microchannels and channels harboring intricate in‐channel features. The method uses commercially available fused deposition modeling 3D printer and filament made of polyvinyl alcohol (PVA). Mechanically stable molds are fabricated for 3D microchannels that can be completely removed in water. Importantly, the PVA mold is stable and resilient in hydrogels despite being hygroscopic. Perfusion channels are fabricated in biocompatible substrates such as gelatin and poly(ethylene glycol) diacrylate. Fabrication of the network of 3D multilayer microchannels is demonstrated by preassembling sacrificial molds from modular pieces of molds. Intricate staggered‐herringbones grooves (SHGs) are also fabricated within microchannels to produce micromixers. The versatility and resilience of the method developed here is advantageous for biological and chemical applications that require 3D configurations of microchannels in various matrices, which would not be compatible with fabrication by direct 3D printing and softlithography. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Macromolecular Materials & Engineering Wiley

Fabrication of 3D Microfluidic Channels and In‐Channel Features Using 3D Printed, Water‐Soluble Sacrificial Mold

Loading next page...
 
/lp/wiley/fabrication-of-3d-microfluidic-channels-and-in-channel-features-using-fWVvBf455G
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
© 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
ISSN
1438-7492
eISSN
1439-2054
D.O.I.
10.1002/mame.201700484
Publisher site
See Article on Publisher Site

Abstract

Recent advent of additive manufacturing potentiates the fabrication of microchannels, albeit with limitations in resolution of printed structures, freedom of geometry, and choice of printable materials. Herein, a method is developed by sacrificial molding to fabricate microchannels in various polymer matrices and geometries. This method allows for rapid fabrication of 3D microchannels and channels harboring intricate in‐channel features. The method uses commercially available fused deposition modeling 3D printer and filament made of polyvinyl alcohol (PVA). Mechanically stable molds are fabricated for 3D microchannels that can be completely removed in water. Importantly, the PVA mold is stable and resilient in hydrogels despite being hygroscopic. Perfusion channels are fabricated in biocompatible substrates such as gelatin and poly(ethylene glycol) diacrylate. Fabrication of the network of 3D multilayer microchannels is demonstrated by preassembling sacrificial molds from modular pieces of molds. Intricate staggered‐herringbones grooves (SHGs) are also fabricated within microchannels to produce micromixers. The versatility and resilience of the method developed here is advantageous for biological and chemical applications that require 3D configurations of microchannels in various matrices, which would not be compatible with fabrication by direct 3D printing and softlithography.

Journal

Macromolecular Materials & EngineeringWiley

Published: Jan 1, 2018

Keywords: ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off