Fabrication and characterization of double‐shelled CeO2‐La2O3/Au/Fe3O4 hollow architecture as a recyclable and highly thermal stability nanocatalyst

Fabrication and characterization of double‐shelled CeO2‐La2O3/Au/Fe3O4 hollow architecture as... A novel magnetic binary‐metal‐oxide‐coated nanocataly composing of a hollow Fe3O4 core and CeO2‐La2O3 shells with Au nanoparticles encapsulated has been created in this work. The structural features of catalysts were characterized by several techniques, including SEM, TEM, UV‐vis, FTIR, XRD, XPS and TGA analyses. After the coating of CeO2‐La2O3 layer, CeO2‐La2O3/Au/C/Fe3O4 microspheres showed a superior thermal stability and catalytic reactivity compared with a pure CeO2 or La2O3 layer. Accompanied by the burning of carbon layer, the specific surface could be increased by the formation of double‐shelled structure. Besides, the desired samples could be separated by magnet, implying the superior recycle performance. Using the reduction of 4‐nitrophenol by NaBH4 as a model reaction, the microspheres exhibited highly reusability, superior catalytic activity, thermal stability, which are attributed to the unique double‐shelled structure of the support, uniform distribution of Au nanoparticles, the highly thermal stability of CeO2‐La2O3 layer and mixed oxide synergistic effect. As a consequence, the unique nanocatalyst will open a promising way in the fabrication of the double‐shelled hollow binary‐metal‐oxide materials for future research and has great potential in other applications. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Organometallic Chemistry Wiley

Fabrication and characterization of double‐shelled CeO2‐La2O3/Au/Fe3O4 hollow architecture as a recyclable and highly thermal stability nanocatalyst

Loading next page...
 
/lp/wiley/fabrication-and-characterization-of-double-shelled-ceo2-la2o3-au-fe3o4-segkonlBl0
Publisher
Wiley
Copyright
Copyright © 2018 John Wiley & Sons, Ltd.
ISSN
0268-2605
eISSN
1099-0739
D.O.I.
10.1002/aoc.4201
Publisher site
See Article on Publisher Site

Abstract

A novel magnetic binary‐metal‐oxide‐coated nanocataly composing of a hollow Fe3O4 core and CeO2‐La2O3 shells with Au nanoparticles encapsulated has been created in this work. The structural features of catalysts were characterized by several techniques, including SEM, TEM, UV‐vis, FTIR, XRD, XPS and TGA analyses. After the coating of CeO2‐La2O3 layer, CeO2‐La2O3/Au/C/Fe3O4 microspheres showed a superior thermal stability and catalytic reactivity compared with a pure CeO2 or La2O3 layer. Accompanied by the burning of carbon layer, the specific surface could be increased by the formation of double‐shelled structure. Besides, the desired samples could be separated by magnet, implying the superior recycle performance. Using the reduction of 4‐nitrophenol by NaBH4 as a model reaction, the microspheres exhibited highly reusability, superior catalytic activity, thermal stability, which are attributed to the unique double‐shelled structure of the support, uniform distribution of Au nanoparticles, the highly thermal stability of CeO2‐La2O3 layer and mixed oxide synergistic effect. As a consequence, the unique nanocatalyst will open a promising way in the fabrication of the double‐shelled hollow binary‐metal‐oxide materials for future research and has great potential in other applications.

Journal

Applied Organometallic ChemistryWiley

Published: Jan 1, 2018

Keywords: ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off